Spaces:
Sleeping
Sleeping
File size: 1,928 Bytes
6d08b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import time
import gradio as gr
def fake_diffusion(steps):
for i in range(steps):
print(f"Current step: {i}")
time.sleep(0.5)
yield str(i)
def long_prediction(*args, **kwargs):
time.sleep(10)
return 42
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
n = gr.Slider(1, 10, value=9, step=1, label="Number Steps")
run = gr.Button(value="Start Iterating")
output = gr.Textbox(label="Iterative Output")
stop = gr.Button(value="Stop Iterating")
with gr.Column():
textbox = gr.Textbox(label="Prompt")
prediction = gr.Number(label="Expensive Calculation")
run_pred = gr.Button(value="Run Expensive Calculation")
with gr.Column():
cancel_on_change = gr.Textbox(label="Cancel Iteration and Expensive Calculation on Change")
cancel_on_submit = gr.Textbox(label="Cancel Iteration and Expensive Calculation on Submit")
echo = gr.Textbox(label="Echo")
with gr.Row():
with gr.Column():
image = gr.Image(sources=["webcam"], label="Cancel on clear", interactive=True)
with gr.Column():
video = gr.Video(sources=["webcam"], label="Cancel on start recording", interactive=True)
click_event = run.click(fake_diffusion, n, output)
stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)
cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])
cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])
image.clear(None, None, None, cancels=[click_event, pred_event])
video.start_recording(None, None, None, cancels=[click_event, pred_event])
demo.queue(max_size=20)
if __name__ == "__main__":
demo.launch()
|