File size: 9,099 Bytes
13ed5cd
 
 
c2c05b2
 
 
 
 
 
 
 
13ed5cd
 
 
c2c05b2
 
13ed5cd
c2c05b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ed5cd
c2c05b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ed5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c05b2
 
 
13ed5cd
c2c05b2
13ed5cd
c2c05b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ed5cd
 
 
c2c05b2
13ed5cd
 
 
c2c05b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import requests
import sys
import pdb
import copy
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
from peft import LoraConfig
p = "src/"
sys.path.append(p)
from model import make_1step_sched


"""The forward method of the `Encoder` class."""
def my_vae_encoder_fwd(self, sample):
    sample = self.conv_in(sample)
    l_blocks = []
    # down
    for down_block in self.down_blocks:
        l_blocks.append(sample)
        sample = down_block(sample)
    # middle
    sample = self.mid_block(sample)
    sample = self.conv_norm_out(sample)
    sample = self.conv_act(sample)
    sample = self.conv_out(sample)
    self.current_down_blocks = l_blocks
    return sample


"""The forward method of the `Decoder` class."""
def my_vae_decoder_fwd(self,sample, latent_embeds = None):
    sample = self.conv_in(sample)
    upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
    # middle
    sample = self.mid_block(sample, latent_embeds)
    sample = sample.to(upscale_dtype)
    if not self.ignore_skip:
        skip_convs = [self.skip_conv_1, self.skip_conv_2, self.skip_conv_3, self.skip_conv_4]
        # up
        for idx, up_block in enumerate(self.up_blocks):
            skip_in = skip_convs[idx](self.incoming_skip_acts[::-1][idx])
            # add skip
            sample = sample + skip_in
            sample = up_block(sample, latent_embeds)
    else:
        for idx, up_block in enumerate(self.up_blocks):
            sample = up_block(sample, latent_embeds)
    # post-process
    if latent_embeds is None:
        sample = self.conv_norm_out(sample)
    else:
        sample = self.conv_norm_out(sample, latent_embeds)
    sample = self.conv_act(sample)
    sample = self.conv_out(sample)
    return sample


class TwinConv(torch.nn.Module):
    def __init__(self, convin_pretrained, convin_curr):
        super(TwinConv, self).__init__()
        self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
        self.conv_in_curr = copy.deepcopy(convin_curr)
        self.r = None
    def forward(self, x):
        x1 = self.conv_in_pretrained(x).detach()
        x2 = self.conv_in_curr(x)
        return x1*(1-self.r) + x2*(self.r)


class Pix2Pix_Turbo(torch.nn.Module):
    def __init__(self, name, ckpt_folder="checkpoints"):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo",subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()
        self.sched = make_1step_sched()

        vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained("stabilityai/sd-turbo", subfolder="unet")

        if name=="edge_to_image":
            url = "https://www.cs.cmu.edu/~img2img-turbo/models/edge_to_image_loras.pkl"
            os.makedirs(ckpt_folder, exist_ok=True)
            outf = os.path.join(ckpt_folder, "edge_to_image_loras.pkl")
            if not os.path.exists(outf):
                print(f"Downloading checkpoint to {outf}")
                response = requests.get(url, stream=True)
                total_size_in_bytes= int(response.headers.get('content-length', 0))
                block_size = 1024  # 1 Kibibyte
                progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
                with open(outf, 'wb') as file:
                    for data in response.iter_content(block_size):
                        progress_bar.update(len(data))
                        file.write(data)
                progress_bar.close()
                if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
                    print("ERROR, something went wrong")
                print(f"Downloaded successfully to {outf}")
            p_ckpt = outf
            sd = torch.load(p_ckpt, map_location="cpu")
            unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])

        if name=="sketch_to_image_stochastic":
            # download from url
            url = "https://www.cs.cmu.edu/~img2img-turbo/models/sketch_to_image_stochastic_lora.pkl"
            os.makedirs(ckpt_folder, exist_ok=True)
            outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic_lora.pkl")
            if not os.path.exists(outf):
                print(f"Downloading checkpoint to {outf}")
                response = requests.get(url, stream=True)
                total_size_in_bytes= int(response.headers.get('content-length', 0))
                block_size = 1024  # 1 Kibibyte
                progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
                with open(outf, 'wb') as file:
                    for data in response.iter_content(block_size):
                        progress_bar.update(len(data))
                        file.write(data)
                progress_bar.close()
                if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
                    print("ERROR, something went wrong")
                print(f"Downloaded successfully to {outf}")
            p_ckpt = outf
            sd = torch.load(p_ckpt, map_location="cpu")
            unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
            convin_pretrained = copy.deepcopy(unet.conv_in)
            unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)
        
        vae.encoder.forward = my_vae_encoder_fwd.__get__(vae.encoder, vae.encoder.__class__)
        vae.decoder.forward = my_vae_decoder_fwd.__get__(vae.decoder, vae.decoder.__class__)
        # add the skip connection convs
        vae.decoder.skip_conv_1 = torch.nn.Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
        vae.decoder.skip_conv_2 = torch.nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
        vae.decoder.skip_conv_3 = torch.nn.Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
        vae.decoder.skip_conv_4 = torch.nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
        vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
        vae.decoder.ignore_skip = False
        vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
        unet.add_adapter(unet_lora_config)
        _sd_unet = unet.state_dict()
        for k in sd["state_dict_unet"]: _sd_unet[k] = sd["state_dict_unet"][k]
        unet.load_state_dict(_sd_unet)
        unet.enable_xformers_memory_efficient_attention()
        _sd_vae = vae.state_dict()
        for k in sd["state_dict_vae"]: _sd_vae[k] = sd["state_dict_vae"][k]
        vae.load_state_dict(_sd_vae)
        unet.to("cuda")
        vae.to("cuda")
        unet.eval()
        vae.eval()
        self.unet, self.vae = unet, vae
        self.timesteps = torch.tensor([999], device="cuda").long()


    def forward(self, c_t, prompt, deterministic=True, r=1.0, noise_map=None):
        # encode the text prompt
        caption_tokens = self.tokenizer(prompt, max_length=self.tokenizer.model_max_length,
                padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
        caption_enc = self.text_encoder(caption_tokens)[0]
        if deterministic:
            encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
            model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=caption_enc,).sample
            x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
            self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
            output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
        else:
            # scale the lora weights based on the r value
            self.unet.set_adapters(["default"], weights=[r])
            set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
            encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
            # combine the input and noise
            unet_input = encoded_control*r + noise_map*(1-r)
            self.unet.conv_in.r = r
            unet_output = self.unet(unet_input, self.timesteps, encoder_hidden_states=caption_enc,).sample
            self.unet.conv_in.r = None
            x_denoised = self.sched.step(unet_output, self.timesteps, unet_input, return_dict=True).prev_sample
            self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
            output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
        return output_image