Spaces:
Running
Running
File size: 12,875 Bytes
833aed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
"""
Business logic for moderation and guardrail services
"""
import json
import os
import uuid
import asyncio
from datetime import datetime
from typing import Dict, List, Tuple, Optional
import openai
import gspread
from google.oauth2 import service_account
# Import from parent directory
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
from utils import MODEL_CONFIGS, predict_with_model
# --- Categories ---
CATEGORIES = {
"binary": ["binary"],
"hateful": ["hateful_l1", "hateful_l2"],
"insults": ["insults"],
"sexual": ["sexual_l1", "sexual_l2"],
"physical_violence": ["physical_violence"],
"self_harm": ["self_harm_l1", "self_harm_l2"],
"all_other_misconduct": ["all_other_misconduct_l1", "all_other_misconduct_l2"],
}
# --- OpenAI Setup ---
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
async_client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# --- Google Sheets Config ---
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
RESULTS_SHEET_NAME = "results"
VOTES_SHEET_NAME = "votes"
CHATBOT_SHEET_NAME = "chatbot"
def get_gspread_client():
"""Get authenticated Google Sheets client"""
credentials = service_account.Credentials.from_service_account_info(
json.loads(GOOGLE_CREDENTIALS),
scopes=[
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
return gspread.authorize(credentials)
def save_results_data(row: Dict):
"""Save moderation results to Google Sheets"""
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(RESULTS_SHEET_NAME)
ws.append_row(list(row.values()))
except Exception as e:
print(f"Error saving results data: {e}")
def save_vote_data(text_id: str, agree: bool):
"""Save user feedback vote to Google Sheets"""
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(VOTES_SHEET_NAME)
vote_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"agree": agree
}
ws.append_row(list(vote_row.values()))
except Exception as e:
print(f"Error saving vote data: {e}")
def log_chatbot_data(row: Dict):
"""Log chatbot interaction to Google Sheets"""
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(CHATBOT_SHEET_NAME)
ws.append_row([
row["datetime"], row["text_id"], row["text"], row["binary_score"],
row["hateful_l1_score"], row["hateful_l2_score"], row["insults_score"],
row["sexual_l1_score"], row["sexual_l2_score"], row["physical_violence_score"],
row["self_harm_l1_score"], row["self_harm_l2_score"], row["aom_l1_score"],
row["aom_l2_score"], row["openai_score"]
])
except Exception as e:
print(f"Error saving chatbot data: {e}")
# --- Moderation Logic ---
def analyze_text(text: str, model_key: str = None) -> Dict:
"""
Analyze text for moderation risks
Returns dict with binary score, categories, text_id, and model info
"""
if not text.strip():
return {
"binary_score": 0.0,
"binary_verdict": "pass",
"binary_percentage": 0,
"categories": [],
"text_id": "",
"model_used": model_key or "lionguard-2.1"
}
try:
text_id = str(uuid.uuid4())
results, selected_model_key = predict_with_model([text], model_key)
binary_score = results.get('binary', [0.0])[0]
# Determine verdict
if binary_score < 0.4:
verdict = "pass"
elif 0.4 <= binary_score < 0.7:
verdict = "warn"
else:
verdict = "fail"
# Process categories
main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
category_emojis = {
'hateful': 'π€¬',
'insults': 'π’',
'sexual': 'π',
'physical_violence': 'βοΈ',
'self_harm': 'βΉοΈ',
'all_other_misconduct': 'π
ββοΈ'
}
categories_list = []
max_scores = {}
for category in main_categories:
subcategories = CATEGORIES[category]
level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
max_score = max(level_scores) if level_scores else 0.0
max_scores[category] = max_score
category_name = category.replace('_', ' ').title()
categories_list.append({
"name": category_name,
"emoji": category_emojis.get(category, 'π'),
"max_score": max_score
})
# Save to Google Sheets if enabled
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
results_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"text": text,
"binary_score": binary_score,
"model": selected_model_key,
}
for category in main_categories:
results_row[f"{category}_max"] = max_scores[category]
save_results_data(results_row)
return {
"binary_score": binary_score,
"binary_verdict": verdict,
"binary_percentage": int(binary_score * 100),
"categories": categories_list,
"text_id": text_id,
"model_used": selected_model_key
}
except Exception as e:
print(f"Error analyzing text: {e}")
raise
def submit_feedback(text_id: str, agree: bool) -> Dict:
"""Submit user feedback"""
if not text_id:
return {"success": False, "message": "No text ID provided"}
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, agree)
message = "π Thank you!" if agree else "π Thanks for the feedback!"
return {"success": True, "message": message}
return {"success": False, "message": "Voting not available"}
# --- Guardrail Comparison Logic (Async) ---
async def get_openai_response_async(message: str, system_prompt: str = "You are a helpful assistant.") -> str:
"""Get OpenAI chat response asynchronously"""
try:
response = await async_client.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
max_tokens=500,
temperature=0,
seed=42,
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}. Please check your OpenAI API key."
async def openai_moderation_async(message: str) -> bool:
"""Check if message is flagged by OpenAI moderation"""
try:
response = await async_client.moderations.create(input=message)
return response.results[0].flagged
except Exception as e:
print(f"Error in OpenAI moderation: {e}")
return False
def lionguard_2_sync(message: str, model_key: str, threshold: float = 0.5) -> Tuple[bool, float]:
"""Check if message is flagged by Lionguard"""
try:
results, _ = predict_with_model([message], model_key)
binary_prob = results.get('binary', [0.0])[0]
return binary_prob > threshold, binary_prob
except Exception as e:
print(f"Error in LionGuard inference for {model_key}: {e}")
return False, 0.0
async def process_no_moderation(message: str, history: List[Dict]) -> List[Dict]:
"""Process message without moderation"""
no_mod_response = await get_openai_response_async(message)
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": no_mod_response})
return history
async def process_openai_moderation(message: str, history: List[Dict]) -> List[Dict]:
"""Process message with OpenAI moderation"""
openai_flagged = await openai_moderation_async(message)
history.append({"role": "user", "content": message})
if openai_flagged:
openai_response = "π« This message has been flagged by OpenAI moderation"
history.append({"role": "assistant", "content": openai_response})
else:
openai_response = await get_openai_response_async(message)
history.append({"role": "assistant", "content": openai_response})
return history
async def process_lionguard(message: str, history: List[Dict], model_key: str) -> Tuple[List[Dict], float]:
"""Process message with Lionguard model"""
loop = asyncio.get_event_loop()
lg_flagged, lg_score = await loop.run_in_executor(None, lionguard_2_sync, message, model_key, 0.5)
history.append({"role": "user", "content": message})
if lg_flagged:
lg_response = f"π« This message has been flagged by {MODEL_CONFIGS[model_key]['label']}"
history.append({"role": "assistant", "content": lg_response})
else:
lg_response = await get_openai_response_async(message)
history.append({"role": "assistant", "content": lg_response})
return history, lg_score
def _log_chatbot_sync(message: str, lg_score: float, model_key: str):
"""Sync helper for logging chatbot data"""
try:
results, selected_model_key = predict_with_model([message], model_key)
now = datetime.now().isoformat()
text_id = str(uuid.uuid4())
row = {
"datetime": now,
"text_id": text_id,
"text": message,
"binary_score": results.get("binary", [None])[0],
"hateful_l1_score": results.get(CATEGORIES['hateful'][0], [None])[0],
"hateful_l2_score": results.get(CATEGORIES['hateful'][1], [None])[0],
"insults_score": results.get(CATEGORIES['insults'][0], [None])[0],
"sexual_l1_score": results.get(CATEGORIES['sexual'][0], [None])[0],
"sexual_l2_score": results.get(CATEGORIES['sexual'][1], [None])[0],
"physical_violence_score": results.get(CATEGORIES['physical_violence'][0], [None])[0],
"self_harm_l1_score": results.get(CATEGORIES['self_harm'][0], [None])[0],
"self_harm_l2_score": results.get(CATEGORIES['self_harm'][1], [None])[0],
"aom_l1_score": results.get(CATEGORIES['all_other_misconduct'][0], [None])[0],
"aom_l2_score": results.get(CATEGORIES['all_other_misconduct'][1], [None])[0],
"openai_score": None,
}
try:
openai_result = client.moderations.create(input=message)
row["openai_score"] = float(openai_result.results[0].category_scores.get("hate", 0.0))
except Exception:
row["openai_score"] = None
log_chatbot_data(row)
except Exception as e:
print(f"Error in sync logging: {e}")
async def process_chat_message(
message: str,
model_key: str,
history_no_mod: List[Dict],
history_openai: List[Dict],
history_lg: List[Dict]
) -> Tuple[List[Dict], List[Dict], List[Dict], Optional[float]]:
"""
Process message concurrently across all three guardrails
Returns updated histories and LionGuard score
"""
if not message.strip():
return history_no_mod, history_openai, history_lg, None
# Run all three processes concurrently
results = await asyncio.gather(
process_no_moderation(message, history_no_mod),
process_openai_moderation(message, history_openai),
process_lionguard(message, history_lg, model_key),
return_exceptions=True
)
# Unpack results
history_no_mod = results[0] if not isinstance(results[0], Exception) else history_no_mod
history_openai = results[1] if not isinstance(results[1], Exception) else history_openai
history_lg_result = results[2] if not isinstance(results[2], Exception) else (history_lg, 0.0)
history_lg = history_lg_result[0]
lg_score = history_lg_result[1] if isinstance(history_lg_result, tuple) else 0.0
# Log to Google Sheets in background
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
try:
loop = asyncio.get_event_loop()
loop.run_in_executor(None, _log_chatbot_sync, message, lg_score, model_key)
except Exception as e:
print(f"Chatbot logging failed: {e}")
return history_no_mod, history_openai, history_lg, lg_score
|