File size: 17,572 Bytes
b2f544f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9cfd03
 
 
b2f544f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import collections
import heapq
import json
import os
import logging
import faiss
import requests
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from open_clip import create_model, get_tokenizer
from torchvision import transforms
from PIL import Image
import io
from pathlib import Path
from huggingface_hub import hf_hub_download

log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger()

hf_token = os.getenv("HF_TOKEN")

model_str = "hf-hub:imageomics/bioclip"
tokenizer_str = "ViT-B-16"

txt_emb_npy = hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='txt_emb_species.npy', repo_type="dataset")
txt_names_json = "txt_emb_species.json"

min_prob = 1e-9
k = 5

ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

preprocess_img = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Resize((224, 224), antialias=True),
        transforms.Normalize(
            mean=(0.48145466, 0.4578275, 0.40821073),
            std=(0.26862954, 0.26130258, 0.27577711),
        ),
    ]
)

MIN_PROB = 1e-9
TOP_K_PREDICTIONS = 5
TOP_K_CANDIDATES = 250
TOP_N_SIMILAR = 22
SIMILARITY_BOOST = 0.2
VOTE_THRESHOLD = 3
SIMILARITY_THRESHOLD = 0.99  

# Add paths for RAG
PHOTO_LOOKUP_PATH = f"./photo_lookup.json"
SPECIES_LOOKUP_PATH = f"./species_lookup.json"

theme = gr.themes.Base(
    primary_hue=gr.themes.colors.teal, 
    secondary_hue=gr.themes.colors.blue,
    neutral_hue=gr.themes.colors.gray,
    text_size=gr.themes.sizes.text_lg,
).set(
    button_primary_background_fill="#114A56",
    button_primary_background_fill_hover="#114A56",
    block_title_text_weight="600",
    block_label_text_weight="600",
    block_label_text_size="*text_md",
)

EXAMPLES_DIR = Path("examples")
example_images = sorted(str(p) for p in EXAMPLES_DIR.glob("*.jpg"))

def indexed(lst, indices):
    return [lst[i] for i in indices]

def format_name(taxon, common):
    taxon = " ".join(taxon)
    if not common:
        return taxon
    return f"{taxon} ({common})"

def combine_duplicate_predictions(predictions):
    """Combine predictions where one name is contained within another."""
    combined = {}
    used = set()
    
    # Sort by length of name (longer names first) and probability
    items = sorted(predictions.items(), key=lambda x: (-len(x[0]), -x[1]))
    
    for name1, prob1 in items:
        if name1 in used:
            continue
            
        total_prob = prob1
        used.add(name1)
        
        # Check remaining predictions
        for name2, prob2 in predictions.items():
            if name2 in used:
                continue
                
            # Convert to lowercase for comparison
            name1_lower = name1.lower()
            name2_lower = name2.lower()
            
            # Check if one name contains the other
            if name1_lower in name2_lower or name2_lower in name1_lower:
                total_prob += prob2
                used.add(name2)
        
        combined[name1] = total_prob
    
    # Normalize probabilities
    total = sum(combined.values())
    return {k: v/total for k, v in combined.items()}

@torch.no_grad()
def open_domain_classification(img, rank: int, return_all=False):
    """
    Predicts from the entire tree of life using RAG approach.
    """
    logger.info(f"Starting open domain classification for rank: {rank}")
    img = preprocess_img(img).to(device)
    img_features = model.encode_image(img.unsqueeze(0))
    img_features = F.normalize(img_features, dim=-1)

    # Get zero-shot predictions
    logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
    probs = F.softmax(logits, dim=0)

    # Get similar images votes and metadata
    species_votes, similar_images = get_similar_images_metadata(img_features, faiss_index, id_mapping, name_mapping)

    if rank + 1 == len(ranks):
        # Species level prediction
        topk = probs.topk(TOP_K_CANDIDATES)
        predictions = {
            format_name(*txt_names[i]): prob.item()
            for i, prob in zip(topk.indices, topk.values)
        }
        
        # Augment predictions with votes
        augmented_predictions = predictions.copy()
        for pred_name in predictions:
            pred_name_lower = pred_name.lower()
            for voted_species, vote_count in species_votes.items():
                if voted_species in pred_name_lower or pred_name_lower in voted_species:
                    augmented_predictions[pred_name] += SIMILARITY_BOOST * vote_count
                elif vote_count >= VOTE_THRESHOLD:
                    augmented_predictions[voted_species] = vote_count * SIMILARITY_BOOST

        # Sort predictions
        sorted_predictions = dict(sorted(
            augmented_predictions.items(), 
            key=lambda x: x[1], 
            reverse=True
        )[:k])
        
        # Normalize and combine duplicates
        total = sum(sorted_predictions.values())
        sorted_predictions = {k: v/total for k, v in sorted_predictions.items()}
        sorted_predictions = combine_duplicate_predictions(sorted_predictions)
        
        logger.info(f"Top K predictions after combining duplicates: {sorted_predictions}")
        return sorted_predictions, similar_images

    # Higher rank prediction
    output = collections.defaultdict(float)
    for i in torch.nonzero(probs > MIN_PROB).squeeze():
        output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]

    # Incorporate votes for higher ranks
    for species, vote_count in species_votes.items():
        try:
            # Find matching taxonomy in txt_names
            for taxonomy, _ in txt_names:
                if species in " ".join(taxonomy).lower():
                    higher_rank = " ".join(taxonomy[: rank + 1])
                    output[higher_rank] += SIMILARITY_BOOST * vote_count
                    break
        except Exception as e:
            logger.error(f"Error processing vote for species {species}: {e}")

    # Get top-k predictions and normalize
    topk_names = heapq.nlargest(k, output, key=output.get)
    prediction_dict = {name: output[name] for name in topk_names}
    
    # Normalize probabilities to sum to 1
    total = sum(prediction_dict.values())
    prediction_dict = {k: v/total for k, v in prediction_dict.items()}
    prediction_dict = combine_duplicate_predictions(prediction_dict)
    
    logger.info(f"Prediction dictionary after combining duplicates: {prediction_dict}")

    return prediction_dict, similar_images


def change_output(choice):
    return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)

def get_cache_paths(name="demo"):
    """Get paths for cached FAISS index and ID mapping."""
    return {
        'index': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo.index', repo_type="dataset"),
        'mapping': hf_hub_download(repo_id="pyesonekyaw/biome_lfs", filename='cache/faiss_cache_demo_mapping.json', repo_type="dataset")
    }

def build_name_mapping(txt_names):
    """Build mapping between scientific names and common names."""
    name_mapping = {}
    for taxonomy, common_name in txt_names:
        if not common_name:
            continue
        if len(taxonomy) >= 2:
            scientific_name = f"{taxonomy[-2]} {taxonomy[-1]}".lower()
            common_name = common_name.lower()
            name_mapping[scientific_name] = (scientific_name, common_name)
            name_mapping[common_name] = (scientific_name, common_name)
    return name_mapping

def load_faiss_index():
    """Load FAISS index from cache."""
    cache_paths = get_cache_paths()
    logger.info("Loading FAISS index from cache...")
    index = faiss.read_index(cache_paths['index'])
    with open(cache_paths['mapping'], 'r') as f:
        id_mapping = json.load(f)
    return index, id_mapping
    
def get_similar_images_metadata(img_embedding, faiss_index, id_mapping, name_mapping):
    """Get metadata for similar images using FAISS search."""
    img_embedding_np = img_embedding.cpu().numpy()
    if img_embedding_np.ndim == 1:
        img_embedding_np = img_embedding_np.reshape(1, -1)
    
    # Search for more images than needed to account for filtered matches
    distances, indices = faiss_index.search(img_embedding_np, TOP_N_SIMILAR * 2)
    
    # Filter out near-exact matches
    valid_indices = []
    valid_distances = []
    valid_count = 0
    
    for dist, idx in zip(distances[0], indices[0]):
        # For inner product similarity, the distance is already the similarity
        similarity = dist
        if similarity > SIMILARITY_THRESHOLD:
            continue
            
        valid_indices.append(idx)
        valid_distances.append(similarity)
        valid_count += 1
        
        if valid_count >= TOP_N_SIMILAR:
            break
    
    species_votes = {}
    similar_images = []
    
    for idx, similarity in zip(valid_indices[:5], valid_distances[:5]):  # Only process top 5 for display
        similar_img_id = id_mapping[idx]

        try:
            species_names = id_to_species_info.get(similar_img_id)
            species_names = [name for name in species_names if name]
            
            processed_names = set()
            for species in species_names:
                if not species:
                    continue
                name_tuple = name_mapping.get(species)
                if name_tuple:
                    processed_names.add(name_tuple[0])
                else:
                    processed_names.add(species)
            
            for species in processed_names:
                species_votes[species] = species_votes.get(species, 0) + 1
            
            # Store similar image info if the image file exists
            # if img_path and os.path.exists(img_path):
            similar_images.append({
                'id': similar_img_id,
                'species': next(iter(processed_names)) if processed_names else 'Unknown',
                'common_name': species_names[-1],
                'similarity': similarity  # Add similarity score
            })
                
        except Exception as e:
            logger.error(f"Error processing JSON for image {similar_img_id}: {e}")
            continue
    
    return species_votes, similar_images


if __name__ == "__main__":
    logger.info("Starting.")
    model = create_model(model_str, output_dict=True, require_pretrained=True)
    model = model.to(device)
    logger.info("Created model.")

    model = torch.compile(model)
    logger.info("Compiled model.")

    tokenizer = get_tokenizer(tokenizer_str)

    id_to_photo_url = json.load(open(PHOTO_LOOKUP_PATH))
    id_to_species_info = json.load(open(SPECIES_LOOKUP_PATH))
    logger.info(f"Loaded {len(id_to_photo_url)} photo mappings")
    logger.info(f"Loaded {len(id_to_species_info)} species mappings")
    # Load text embeddings and build name mapping
    txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
    with open(txt_names_json) as fd:
        txt_names = json.load(fd)
    
    # Build name mapping
    name_mapping = build_name_mapping(txt_names)
    
    # Build or load FAISS index with test IDs
    faiss_index, id_mapping = load_faiss_index()

    # Define process_output function before using it
    def process_output(img, rank):
        predictions, similar_imgs = open_domain_classification(img, rank)
        
        logger.info(f"Number of similar images found: {len(similar_imgs)}")
        
        images = []
        labels = []
        
        for img_info in similar_imgs:
            img_id = img_info['id']
            img_url = id_to_photo_url.get(img_id)
            img_url = img_url.replace("square", "small")
            logger.info(f"Processing image URL: {img_url}")
            
            try:
                # Try fetching from URL first
                response = requests.get(img_url)
                if response.status_code == 200:
                    try:
                        img = Image.open(io.BytesIO(response.content))
                        images.append(img)
                    except Exception as e:
                        logger.info(f"Failed to load image from URL: {e}")
                        images.append(None)
                else:
                    logger.info(f"Failed to fetch image from URL: {response}")
                    images.append(None)
                    
                # Add label regardless of image load success
                label = f"**{img_info['species']}**"
                if img_info['common_name']:
                    label += f" ({img_info['common_name']})"
                label += f"\nSimilarity: {img_info['similarity']:.3f}"
                label += f"\n[View on iNaturalist](https://www.inaturalist.org/observations/{img_id})"
                labels.append(label)
                
            except Exception as e:
                logger.error(f"Error processing image {img_id}: {e}")
                images.append(None)
                labels.append("")

        # Pad arrays if needed
        images += [None] * (5 - len(images))
        labels += [""] * (5 - len(labels))
        
        logger.info(f"Final number of images: {len(images)}")
        logger.info(f"Final number of labels: {len(labels)}")
        
        return [predictions] + images + labels

    with gr.Blocks(theme=theme) as app:
        # Add header
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                gr.Image("image.jpg", elem_id="logo-img", 
                        show_label=False )
            with gr.Column(scale=30):
                gr.Markdown("""Biome is a vision foundation model-powered tool customized to identify Singapore's local biodiversity. 
                <br/> <br/> 
                **Developed by**: Pye Sone Kyaw - AI Engineer @ Multimodal AI Team - AI Practice - GovTech SG
                <br/> <br/> 
                Under the hood, Biome is using [BioCLIP](https://github.com/Imageomics/BioCLIP) augmented with multimodal search and retrieval to enhance its Singapore-specific biodiversity classification capabilities.
                <br/> <br/> 
                Biome work best when the organism is clearly visible and takes up a substantial part of the image.
                """)

        with gr.Row(variant="panel", elem_id="images_panel"):
            img_input = gr.Image(
                height=400, 
                sources=["upload"],
                type="pil"
            )
            
        

        with gr.Row():
            
            with gr.Column():
                with gr.Row():
                    gr.Examples(
                        examples=example_images,
                        inputs=img_input,
                            label="Example Images"
                        )
                rank_dropdown = gr.Dropdown(
                    label="Taxonomic Rank",
                    info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
                    choices=ranks,
                    value="Species",
                    type="index",
                )
                open_domain_btn = gr.Button("Submit", variant="primary")
            with gr.Column():
                open_domain_output = gr.Label(
                    num_top_classes=k,
                    label="Prediction",
                    show_label=True,
                    value=None,
                )
        
        # New section for similar images
        with gr.Row(variant="panel"):
            with gr.Column():
                gr.Markdown("### Most Similar Images from Database")
            
        with gr.Row():
            similar_images = [
                gr.Image(label="Similar Image 1", height=200, show_label=True),
                gr.Image(label="Similar Image 2", height=200, show_label=True),
                gr.Image(label="Similar Image 3", height=200, show_label=True),
                gr.Image(label="Similar Image 4", height=200, show_label=True),
                gr.Image(label="Similar Image 5", height=200, show_label=True),
            ]
        
        with gr.Row():
            similar_labels = [
                gr.Markdown("Species 1"),
                gr.Markdown("Species 2"),
                gr.Markdown("Species 3"),
                gr.Markdown("Species 4"),
                gr.Markdown("Species 5"),
            ]
            
        rank_dropdown.change(
            fn=change_output, 
            inputs=rank_dropdown, 
            outputs=[open_domain_output]
        )

        open_domain_btn.click(
            fn=process_output,
            inputs=[img_input, rank_dropdown],
            outputs=[open_domain_output] + similar_images + similar_labels,
        )

        with gr.Row(variant="panel"):
            gr.Markdown("""
            **Disclaimer**: This is a proof-of-concept demo for non-commercial purposes. No data is stored or used for any form of training, and all data used for retrieval are from [iNaturalist](https://inaturalist.org/).
            The adage of garbage in, garbage out applies here - uploading images not biodiversity-related will yield unpredictable results.
            """)
    app.queue(max_size=20)
    app.launch(share=False, enable_monitoring=False, allowed_paths=["/app/"])