File size: 10,372 Bytes
b751253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa334e3
e25a90f
b751253
 
 
 
 
 
 
6144c8c
b751253
 
 
 
 
 
 
 
 
 
 
 
7815822
b751253
 
 
 
 
 
 
 
 
 
 
 
5adc8ac
 
a260b86
b751253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7ea35
 
a31ef3c
ee7ea35
aa59e6b
b751253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0214f0b
b751253
 
 
94d2567
cb50ae9
 
 
b751253
 
 
6b7c88e
b751253
 
 
 
 
 
 
 
 
 
 
 
 
 
fa334e3
b751253
 
 
 
 
 
1eb630b
a27cb6e
609797f
df896d1
a27cb6e
b751253
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import pandas as pd
import numpy as np
import torch

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class metric_tp_fp_Datasets(evaluate.Metric):
	"""TODO: Short description of my metric."""
	def _info(self):
		# TODO: Specifies the evaluate.EvaluationModuleInfo object
		return evaluate.MetricInfo(
			# This is the description that will appear on the metrics page.
            		module_type="metric",			
			description=_DESCRIPTION,
			citation=_CITATION,
			inputs_description=_KWARGS_DESCRIPTION,
			# This defines the format of each prediction and reference
			features=datasets.Features({
				'predictions': datasets.features.Sequence(datasets.Value('float32')),
				'references': datasets.features.Sequence(datasets.Value('int32')),
				}),
			# Homepage of the metric for documentation
			homepage="http://module.homepage",
			# Additional links to the codebase or references
			codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
			reference_urls=["http://path.to.reference.url/new_module"]
			)

	def _download_and_prepare(self, dl_manager):
		"""Optional: download external resources useful to compute the scores"""
		# TODO: Download external resources if needed
		pass
	
	#Prediction strategy function selector########################################
	def predict(self, logits, prediction_strategy):
		if prediction_strategy[0] == "argmax_max":
			results = self.argmax_max(logits)
		elif prediction_strategy[0] == "softmax_threshold":
			results = self.softmax_threshold(logits, prediction_strategy[1])
		elif prediction_strategy[0] == "softmax_topk":
			results = self.softmax_topk(logits, prediction_strategy[1])
		elif prediction_strategy[0] == "threshold":
			results = self.threshold(logits, prediction_strategy[1])
		elif prediction_strategy[0] == "topk":
			results = self.topk(logits, prediction_strategy[1])     
		return results
	#Prediction strategy functions______________________________________________
	def argmax_max(self, logits):
		predictions = []
		argmax = torch.argmax(logits, dim=-1)
		for prediction in argmax:
			predicted_indexes = [prediction.item()]
			predictions.append(predicted_indexes)	
		return predictions
	def softmax_threshold(logits, threshold):
		predictions = []
		softmax = torch.softmax(logits, dim=-1)
		for prediction in softmax:
			predicted_indexes =[]
			for index, value in enumerate(prediction):
				if value >= threshold:
					predicted_indexes.append(index)
			predictions.append(predicted_indexes)
		return predictions
	def softmax_topk(self, logits, topk):
		softmax = torch.softmax(logits, dim=-1)
		predictions = softmax.topk(topk).indices.tolist()       
		return predictions
	def threshold(self, logits, threshold):
		predictions = []
		for prediction in logits:
			predicted_indexes =[]
			for index, value in enumerate(prediction):
				if value >= threshold:
					predicted_indexes.append(index)
			predictions.append(predicted_indexes)
		return predictions
	def topk(self, logits, topk):
		predictions = logits.topk(topk).indices.tolist()
		#print(logits)       
		#print(predictions) 
		return predictions

	#Builds a report with the metrics####################################################
	def metrics_report(self, true_positives = "", false_positives = ""):
		classes = true_positives.loc[true_positives["class"] != 'total']["class"].tolist()
		samples = [0 for i in range(len(classes))]
		results = pd.DataFrame({
			"class": classes,
			"N# of True samples": samples,
			"N# of False samples": samples,
			"True Positives": samples,
			"False Positives": samples,
			"r": samples,
			"p": samples,
			"f1": samples,
			"acc": samples,
			})
		results.loc[len(results.index)] =  ["total", 0, 0, 0, 0, 0, 0, 0, 0]
			
		for label in results["class"].tolist():
			if label in true_positives["class"].tolist():
				label_true_samples = true_positives.loc[true_positives["class"] == label, "number of samples"].iloc[0]
				label_true_positives = true_positives.loc[true_positives["class"] == label, "coincidence count"].iloc[0]
			else:
				label_true_samples = 0
				label_true_positives = 0		
			if label in false_positives["class"].tolist():		
				label_false_samples = false_positives.loc[false_positives["class"] == label, "number of samples"].iloc[0]
				label_false_positives = false_positives.loc[false_positives["class"] == label, "coincidence count"].iloc[0]
			else:
				label_false_samples = 0
				label_false_positives = 0
	
			r = label_true_positives/label_true_samples	
			p = label_true_positives/(label_true_positives+label_false_positives)
			f1 = 2*r*p/(r+p)
			if label_false_samples >> 0:
				label_true_negatives = label_false_samples-label_false_positives
			else:
				label_true_negatives = 0
			acc = (label_true_positives+label_true_negatives)/(label_true_samples+label_false_samples)
		
			results.loc[results["class"] == label, "N# of True samples"] = label_true_samples
			results.loc[results["class"] == label, "N# of False samples"] = label_false_samples
			results.loc[results["class"] == label, "True Positives"] = label_true_positives
			results.loc[results["class"] == label, "False Positives"] = label_false_positives
			if label != "total":
				results.loc[results["class"] == label, "r"] = r
				results.loc[results["class"] == label, "p"] = p
				results.loc[results["class"] == label, "f1"] = f1
				results.loc[results["class"] == label, "acc"] = acc
			else:
				results.loc[results["class"] == label, "r"] = ""
				results.loc[results["class"] == label, "p"] = ""
				results.loc[results["class"] == label, "f1"] = ""
				results.loc[results["class"] == label, "acc"] = ""
				results.loc[len(results.index)] =  ["", "", "", "", "Micro avg.", r , p, f1, acc]
		results = results.fillna(0.0)
		final_values = results.loc[:len(results.index)-3]
		results.loc[len(results.index)] =  ["", "", "", "", "Macro avg.", final_values["r"].mean(), final_values["p"].mean(), final_values["f1"].mean(), final_values["acc"].mean()]
		return results

	#Computes the metric for each prediction strategy##############################################
	def _compute(self, predictions, references, prediction_strategies = [["argmax_max"],], FPifWrong = False):
		"""Returns the scores"""
		# TODO: Compute the different scores of the metric
		predictions = torch.from_numpy(np.array(predictions, dtype = 'float32'))
		classes = [i for i in range(len(predictions[0]))]
		#for value in references:
		#	if value[0] not in classes:
		#		classes.append(value[0])
		results = {}
		for prediction_strategy in prediction_strategies:
			prediction_strategy_name = '-'.join(map(str, prediction_strategy))
			print(prediction_strategy_name)
			results[prediction_strategy_name] = {}
			predicted_labels = self.predict(predictions, prediction_strategy)
			samples = [0 for i in range(len(classes))]
			TP_data = pd.DataFrame({
				"class": classes,
				"number of samples": samples,
				"coincidence count": samples,
				})
			FP_data = pd.DataFrame({
				"class": classes,
				"number of samples": samples,
				"coincidence count": samples,
				})
			for i, j in zip(predicted_labels, references):
				#print(i)
				if j[1] == 0:
					TP_data.loc[TP_data["class"] == j[0], "number of samples"] += 1
					if len(i) >> 0:	
						if j[0] in i:
							TP_data.loc[TP_data["class"] == j[0], "coincidence count"] += 1
							TP_data = TP_data.sort_values(by=["class"], ignore_index  = True)
						else:
							if FPifWrong:
								for k in i:                                   
									FP_data.loc[FP_data["class"] == k, "coincidence count"] += 1
									FP_data = FP_data.sort_values(by=["class"], ignore_index  = True)
				if j[1] == 2:
					FP_data.loc[FP_data["class"] == j[0], "number of samples"] += 1
					if len(i) >> 0:
						if j[0] in i:
							FP_data.loc[FP_data["class"] == j[0], "coincidence count"] += 1
							FP_data = FP_data.sort_values(by=["class"], ignore_index  = True)			
			TP_data.loc[len(TP_data.index)] =["total", TP_data["number of samples"].sum(), TP_data["coincidence count"].sum()]
			FP_data.loc[len(FP_data.index)] =["total", FP_data["number of samples"].sum(), FP_data["coincidence count"].sum()]
			report_table = self.metrics_report(
				true_positives = TP_data,
				false_positives = FP_data
				)
			results[prediction_strategy_name] = report_table.rename_axis(prediction_strategy_name, axis='columns')
		return results