File size: 55,603 Bytes
6767c79 67249b1 c94dd2f 6767c79 d4c7482 6767c79 67249b1 c94dd2f 67249b1 c94dd2f 3ef6cec 67249b1 c94dd2f 67249b1 1d221f5 67249b1 d4c7482 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 3ef6cec d4c7482 3ef6cec 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f 67249b1 c94dd2f aad7801 6767c79 c94dd2f aad7801 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 67249b1 6767c79 c94dd2f 6767c79 c94dd2f c49d028 c94dd2f 6767c79 c49d028 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 027abe2 6767c79 aad7801 6767c79 c94dd2f 6767c79 c94dd2f 6767c79 c94dd2f aad7801 6767c79 c94dd2f 6767c79 c94dd2f aad7801 6767c79 8920689 c94dd2f 6767c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
import gradio as gr
import json
import webbrowser
import os
import re
import pandas as pd
import csv
# from anthropic import Anthropic
from openai import OpenAI
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import requests
mongoDBPassword = os.environ.get("MONGODB_PASSWORD")
openaiKey = os.environ.get("OPENAI_API_KEY")
mistralKey = os.environ.get("MISTRAL_API_KEY")
# anthropicKey = os.environ.get("ANTHROPIC_API_KEY")
EXAMPLES = [
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "dict",
"properties": {
"url": {
"type": "string",
"description": "Geocoding API converting a a pair of latitude and longitude coordinates to human readable addresses",
"default": "https://geocode.maps.co/reverse",
},
"headers": {},
"timeout": {
"type": ["number", "tuple"],
"description": "How many seconds to wait for the server to send data before giving up.",
"required": False,
},
"params": {
"lat": {
"type": "number",
"description": "Latitude of the location to reverse geocode.",
"required": True,
},
"lon": {
"type": "number",
"description": "Longitude of the location to reverse geocode.",
"required": True,
},
"format": {
"type": "string",
"description": "The desired response format. Options include 'xml', 'json', 'jsonv2', 'geojson', 'geocodejson'. Default is 'json'.",
"required": False,
},
},
"allow_redirects": {
"type": "boolean",
"description": "A Boolean to enable/disable redirection.",
"default": True,
"required": False,
},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
"required": False,
},
"cert": {
"type": ["string", "tuple"],
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
"required": False,
},
"cookies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
"required": False,
},
"proxies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
"required": False,
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
"required": False,
},
"verify": {
"type": ["boolean", "string"],
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
"required": False,
},
},
},
},
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "dict",
"properties": {
"url": {
"type": "string",
"description": "The Date Nager API provides access holiday information for over 100 countries, including the ability to query for long weekends. It leverages ISO 3166-1 alpha-2 country codes to tailor the search to your specific region of interest. More information can be found in https://date.nager.at/Api",
"default": "https://date.nager.at/api/v3/LongWeekend/{year}/{countryCode}",
},
"headers": {},
"timeout": {
"type": ["number", "tuple"],
"description": "How many seconds to wait for the server to send data before giving up.",
"required": False,
},
"params": {},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
"required": False,
},
"cert": {
"type": ["string", "tuple"],
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
"required": False,
},
"cookies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
"required": False,
},
"proxies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
"required": False,
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
"required": False,
},
"verify": {
"type": ["boolean", "string"],
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
"required": False,
},
},
},
},
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "dict",
"properties": {
"url": {
"type": "string",
"description": "The Open-Meteo API provides detailed weather forecasts for any location worldwide. It offers forecasts up to 16 days in advance and also provide past data. The API's response gives weather variables on an hourly basis, such as temperature, humidity, precipitation, wind speed and direction, etc. More information can be found in https://open-meteo.com/en/docs/",
"default": "https://api.open-meteo.com/v1/forecast",
},
"headers": {},
"timeout": {
"type": ["number", "tuple"],
"description": "How many seconds to wait for the server to send data before giving up.",
"required": False,
},
"params": {
"latitude": {
"type": "string",
"description": "Geographical WGS84 coordinates of the location. Multiple coordinates can be comma separated. E.g., &latitude=52.52,48.85&longitude=13.41,2.35. To return data for multiple locations the JSON output changes to a list of structures. CSV and XLSX formats add a column location_id. N is positive, S is negative",
"required": True,
},
"longitude": {
"type": "string",
"description": "Geographical WGS84 coordinates of the location. Multiple coordinates can be comma separated. E is positive, W is negative",
"required": True,
},
"elevation": {
"type": "string",
"description": "The elevation used for statistical downscaling. Per default, a 90 meter digital elevation model is used. You can manually set the elevation to correctly match mountain peaks. If &elevation=nan is specified, downscaling will be disabled and the API uses the average grid-cell height. For multiple locations, elevation can also be comma separated.",
"required": False,
},
"hourly": {
"type": "string",
"description": "A list of weather variables which should be returned. Values can be comma separated, or multiple &hourly= parameters in the URL can be used. Support parameters: temperature_2m,relative_humidity_2m,dew_point_2m,apparent_temperature,pressure_msl,cloud_cover,cloud_cover_low,cloud_cover_mid,cloud_cover_high,wind_speed_10m,wind_speed_80m,wind_speed_120m,wind_speed_180m,wind_direction_10m,wind_direction_80m,wind_direction_120m,wind_direction_180m,wind_gusts_10m,shortwave_radiation,direct_radiation,direct_normal_irradiance,diffuse_radiation,global_tilted_irradiance,vapour_pressure_deficit,cape,evapotranspiration,et0_fao_evapotranspiration,precipitation,snowfall,precipitation_probability,rain,showers,weather_code,snow_depth,freezing_level_height,visibility,soil_temperature_0cm,soil_temperature_6cm,soil_temperature_18cm,soil_temperature_54cm,soil_moisture_0_to_1cm,soil_moisture_1_to_3cm,soil_moisture_3_to_9cm,soil_moisture_9_to_27cm,soil_moisture_27_to_81cm",
"required": False,
},
"daily": {
"type": "string",
"description": "A list of daily weather variable aggregations which should be returned. Values can be comma separated, or multiple &daily= parameters in the URL can be used. If daily weather variables are specified, parameter timezone is required. Possible values supported temperature_2m_max, temperature_2m_min, apparent_temperature_max, apparent_temperature_min, precipitation_sum, rain_sum, showers_sum, snowfall_sum, precipitation_hours, ,precipitation_probability_max, precipitation_probability_min, precipitation_probability_mean, weather_code,sunrise,sunset,sunshine_duration, daylight_duration, wind_speed_10m_max, wind_gusts_10m_max, wind_direction_10m_dominant,shortwave_radiation_sum,et0_fao_evapotranspiration,uv_index_maxuv_index_clear_sky_max",
"required": False,
},
"temperature_unit": {
"type": "string",
"description": "If fahrenheit is set, all temperature values are converted to Fahrenheit.",
"required": False,
"default": "celsius",
},
"wind_speed_unit": {
"type": "string",
"description": "Other wind speed units: ms, mph, and kn.",
"required": False,
"default": "kmh",
},
"precipitation_unit": {
"type": "string",
"description": "Other precipitation amount units: inch.",
"required": False,
"default": "mm",
},
"timeformat": {
"type": "string",
"description": "If format unixtime is selected, all time values are returned in UNIX epoch time in seconds. Please note that all timestamps are in GMT+0! For daily values with unix timestamps, please apply utc_offset_seconds again to get the correct date.",
"required": False,
"default": "iso8601",
},
"timezone": {
"type": "string",
"description": "If timezone is set, all timestamps are returned as local-time and data is returned starting at 00:00 local-time. Any time zone name from the time zone database is supported. If auto is set as a time zone, the coordinates will be automatically resolved to the local time zone. For multiple coordinates, a comma separated list of timezones can be specified.",
"required": False,
"default": "GMT",
},
"past_days": {
"type": "integer",
"description": "If past_days is set, yesterday or the day before yesterday data are also returned.",
"required": False,
"default": 0,
},
"forecast_days": {
"type": "integer",
"description": "Per default, only 7 days are returned. Up to 16 days of forecast are possible.",
"required": False,
"default": 7,
},
"forecast_hours": {
"type": "integer",
"description": "Similar to forecast_days, the number of timesteps of hourly data can be controlled.",
"required": False,
},
"forecast_minutely_15": {
"type": "integer",
"description": "The number of timesteps of 15-minutely data can be controlled.",
"required": False,
},
"past_hours": {
"type": "integer",
"description": "the number of timesteps of hourly data controlled",
"required": False,
},
"past_minutely_15": {
"type": "integer",
"description": "the number of timesteps of 15 minute data controlled",
"required": False,
},
"start_date": {
"type": "string",
"description": "The time interval to get weather data. A day must be specified as an ISO8601 date (e.g. 2022-06-30).",
"required": False,
},
"end_date": {
"type": "string",
"description": "",
"required": False,
},
"start_hour": {
"type": "string",
"description": "The time interval to get weather data for hourly data. Time must be specified as an ISO8601 date and time (e.g. 2022-06-30T12:00).",
"required": False,
},
"end_hour": {
"type": "string",
"description": "",
"required": False,
},
"start_minutely_15": {
"type": "string",
"description": "",
"required": False,
},
"end_minutely_15": {
"type": "string",
"description": "",
"required": False,
},
"models": {
"type": "list",
"items": {"type": "string"},
"description": "A list of string, manually select one or more weather models. Per default, the best suitable weather models will be combined.",
"required": False,
},
"cell_selection": {
"type": "string",
"description": "Set a preference how grid-cells are selected. The default land finds a suitable grid-cell on land with similar elevation to the requested coordinates using a 90-meter digital elevation model. sea prefers grid-cells on sea. nearest selects the nearest possible grid-cell.",
"required": False,
},
"apikey": {
"type": "string",
"description": "Only required to commercial use to access reserved API resources for customers. The server URL requires the prefix customer-. See pricing for more information.",
"required": False,
},
},
"allow_redirects": {
"type": "boolean",
"description": "A Boolean to enable/disable redirection.",
"default": True,
"required": False,
},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
"required": False,
},
"cert": {
"type": ["string", "tuple"],
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
"required": False,
},
"cookies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
"required": False,
},
"proxies": {
"type": "dict",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
"required": False,
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
"required": False,
},
"verify": {
"type": ["boolean", "string"],
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
"required": False,
},
},
},
},
]
PROMPTS = [
"Can you provide address for latitude 37.4224764 and longitude -122.0842499 using the Geocoding API?",
"I'm planning a series of long weekend getaways for the upcoming year and I need to know when they'll occur in my country. Could you fetch me the list of long weekends for Canada in the year 2023? I'd like to integrate this information into my holiday planning app.",
"I'm planning a camping trip and I need to know the weather forecast. Can you fetch me the weather data for the campsite located at latitude 35.68 and longitude -121.34 for the next 10 days including daily temperature and precipitation forecasts? Also, I prefer the temperature 2 minute max in Fahrenheit and sum of precipitation in inches.",
]
EXAMPLES = [
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "Get statistics for all countries about COVID-19",
"default": "https://covid-193.p.rapidapi.com/statistics",
},
"headers": {
"properties": {
"X-RapidAPI-Key": {
"type": "string",
"description": "The API key for authenticating requests to RapidAPI.",
},
"X-RapidAPI-Host": {
"type": "string",
"description": "The host domain for the RapidAPI service being accessed.",
},
},
"type": "object",
"required": ["X-RapidAPI-Key", "X-RapidAPI-Host"],
},
"timeout": {
"type": "string",
"description": "How many seconds to wait for the server to send data before giving up.",
},
"params": {
"properties": {
"country": {
"type": "string",
"description": "Name of the country to retrieve data for. Use '[All]' to indicate a global history request.",
}
},
"type": "object",
"required": [],
},
"allow_redirects": {
"type": "boolean",
"description": "A Boolean to enable/disable redirection.",
"default": True,
},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
},
"cert": {
"type": "string",
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
},
"cookies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
},
"proxies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
},
"verify": {
"type": "string",
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
},
},
},
"required": ["url"],
},
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "Geocoding API converting a human-readable address into a pair of latitude and longitude coordinates",
"default": "https://geocode.maps.co/search",
},
"headers": {"properties": {}, "type": "object", "required": []},
"timeout": {
"type": "string",
"description": "How many seconds to wait for the server to send data before giving up.",
},
"params": {
"properties": {
"lat": {
"type": "number",
"description": "Latitude of the location to reverse geocode.",
},
"lon": {
"type": "number",
"description": "Longitude of the location to reverse geocode.",
},
"api_key": {
"type": "string",
"description": "Your API key for authentication.",
},
"format": {
"type": "string",
"description": "The desired response format. Options include 'xml', 'json', 'jsonv2', 'geojson', 'geocodejson'. Default is 'json'.",
},
},
"type": "object",
"required": ["lat", "lon", "api_key"],
},
"allow_redirects": {
"type": "boolean",
"description": "A Boolean to enable/disable redirection.",
"default": True,
},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
},
"cert": {
"type": "string",
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
},
"cookies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
},
"proxies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
},
"verify": {
"type": "string",
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
},
},
},
"required": ["url"],
},
{
"name": "requests.get",
"description": "Sends a GET request to the specified URL.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "Fetches the age rating of a movie from the OMDB API.",
"default": "http://www.omdbapi.com/",
},
"headers": {"properties": {}, "type": "object", "required": []},
"timeout": {
"type": "string",
"description": "How many seconds to wait for the server to send data before giving up.",
},
"params": {
"properties": {
"i": {
"type": "string",
"description": "A valid IMDb ID (e.g., tt1285016).",
},
"t": {
"type": "string",
"description": "Movie title to search for.",
},
"type": {
"type": "string",
"description": "Type of result to return. Valid options are 'movie', 'series', and 'episode'.",
},
"y": {"type": "string", "description": "Year of release."},
"plot": {
"type": "string",
"description": "Return short or full plot. Default is 'short'.",
},
"r": {
"type": "string",
"description": "The data type to return. Default is 'json'.",
},
"callback": {
"type": "string",
"description": "JSONP callback name.",
},
"v": {
"type": "integer",
"description": "API version (reserved for future use). Default is 1.",
},
},
"type": "object",
"required": [],
},
"allow_redirects": {
"type": "boolean",
"description": "A Boolean to enable/disable redirection.",
"default": True,
},
"auth": {
"type": "tuple",
"description": "A tuple to enable a certain HTTP authentication.",
"default": "None",
},
"cert": {
"type": "string",
"description": "A String or Tuple specifying a cert file or key.",
"default": "None",
},
"cookies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of cookies to send with the request.",
},
"proxies": {
"type": "object",
"additionalProperties": {"type": "string"},
"description": "Dictionary of the protocol to the proxy url.",
},
"stream": {
"type": "boolean",
"description": "A Boolean indication if the response should be immediately downloaded (False) or streamed (True).",
"default": False,
},
"verify": {
"type": "string",
"description": "A Boolean or a String indication to verify the servers TLS certificate or not.",
"default": True,
},
},
},
"required": ["url"],
},
]
PROMPTS = [
"While I'm working on a dashboard to display real-time COVID-19 statistics for Uganda, including total cases, recoveries, and deaths, I realized I need to use the API Sports COVID-19 API for accurate data. Given that I have my API key as '123456' and the host as 'covid-193.p.rapidapi.com', how can I fetch the latest statistics ensuring the request times out if it takes longer than 10 seconds? Also, how can I make sure the response is not streamed?",
"Use my API key '123456', can you convert the address 'Soda Hall, Berkeley, CA' to latitude and longitude coordinates using our Geocoding API, and also make sure to return the results in GeoJSON format?",
"I'm looking to fetch the full plot details for the movie 'Gorilla' from the OMDB API. Can you provide me with the Python requests.get code to retrieve the information in JSON format? I can provide the API key, it's '123456'.",
]
COLUMNS = [
"Rank",
"Overall Acc",
"Model",
"Organization",
"License",
"Simple Function AST",
"Multiple Functions AST",
"Parallel Functions AST",
"Parallel Multiple AST",
"Simple Function Exec",
"Multiple Functions Exec",
"Parallel Functions Exec",
"Parallel Multiple Exec",
"Relevance Detection",
"Cost ($ Per 1k Function Calls)",
"Latency Mean (s)",
"Latency Standard Deviation (s)",
]
COLUMNS_SUMMARY = [
"Rank",
"Overall Acc",
"Model",
"Organization",
"License",
"AST Summary",
"Exec Summary",
"Relevance Detection",
"Cost ($ Per 1k Function Calls)",
"Latency Mean (s)",
]
def parse_csv(text):
lines = text.split("\n")
lines = lines[1:]
result = []
for i in range(len(lines)):
row = lines[i].split(",")
row = [parse_value(value) for value in row]
row.pop(3)
row.pop(5)
row.pop(5)
row.pop(6)
row.pop(6)
row.pop(6)
row.pop(10)
row.pop(10)
result.append(row)
return result
def parse_value(value):
if value.endswith("%"):
return float(value[:-1])
try:
return float(value)
except:
return value
with open("./data.csv", "r") as file:
csv_text = file.read()
DATA = parse_csv(csv_text)
DATA_SUMMARY = [
row[:5]
+ [round((row[5] + row[6] + row[7] + row[8]) / 4, 2)]
+ [round((row[9] + row[10] + row[11] + row[12]) / 4, 2)]
+ row[13:16]
for row in DATA
]
MODELS = [
"gorilla-openfunctions-v2",
"gpt-4-1106-preview-fc",
"gpt-4-0125-preview-fc",
"gpt-3.5-turbo-0125-fc",
"mistral-large-fc",
]
def send_feedback(prompt, function, model, temperature, codeOutput, jsonOutput, vote):
# Login and get access token
login_url = "https://us-west-2.aws.realm.mongodb.com/api/client/v2.0/app/data-onwzq/auth/providers/local-userpass/login"
headers = {"Content-Type": "application/json"}
login_data = {"username": "website", "password": mongoDBPassword}
response = requests.post(login_url, headers=headers, json=login_data)
access_token = response.json()["access_token"]
# Prepare data for sending feedback
url = "https://us-west-2.aws.data.mongodb-api.com/app/data-onwzq/endpoint/data/v1/action/insertOne"
headers = {
"Content-Type": "application/json",
"Access-Control-Request-Headers": "*",
"Authorization": f"Bearer {access_token}",
}
if not prompt or not function:
return
body = {
"collection": "vote",
"database": "gorilla-feedback",
"dataSource": "gorilla",
"document": {
"prompt": prompt,
"funcDef": function,
"temperature": temperature,
"model": model,
"codeOutput": codeOutput,
"jsonOutput": jsonOutput,
"result": vote,
},
}
# Send feedback
response = requests.post(url, headers=headers, json=body)
if response.ok:
print("Document inserted:", response.json())
else:
print("Error:", response.text)
def get_voting_result():
login_url = "https://us-west-2.aws.realm.mongodb.com/api/client/v2.0/app/data-onwzq/auth/providers/local-userpass/login"
headers = {"Content-Type": "application/json"}
login_data = {"username": "website", "password": mongoDBPassword}
response = requests.post(login_url, headers=headers, json=login_data)
access_token = response.json()["access_token"]
# Scanning the database
url = "https://us-west-2.aws.data.mongodb-api.com/app/data-onwzq/endpoint/data/v1/action/find"
headers = {
"Content-Type": "application/json",
"Access-Control-Request-Headers": "*",
"Authorization": f"Bearer {access_token}",
}
body = {
"collection": "vote",
"database": "gorilla-feedback",
"dataSource": "gorilla",
}
response = requests.post(url, headers=headers, json=body)
if response.ok:
data = response.json()
votes = data["documents"]
votes = [vote for vote in votes if vote["result"] in ["positive", "negative"]]
# extract only the model, positive count, negative count
model_votes = {}
for vote in votes:
model = vote["model"]
if model not in model_votes:
model_votes[model] = {"positive": 0, "negative": 0}
model_votes[model][vote["result"]] += 1
for model in model_votes:
model_votes[model]["accuracy"] = model_votes[model]["positive"] / (
model_votes[model]["positive"] + model_votes[model]["negative"]
)
result = []
for model in model_votes:
result.append(
[
model,
model_votes[model]["accuracy"],
model_votes[model]["positive"],
model_votes[model]["negative"],
]
)
result = sorted(result, key=lambda x: x[1], reverse=True)
return pd.DataFrame(
result, columns=["Model", "Accuracy", "Positive", "Negative"]
)
else:
print("Error:", response.text)
return []
def send_feedback_negative(
prompt, function, model, temperature, codeOutput, jsonOutput
):
send_feedback(
prompt, function, model, temperature, codeOutput, jsonOutput, "negative"
)
return "Thank you for your feedback. We will use this to improve our service."
def send_feedback_positive(
prompt, function, model, temperature, codeOutput, jsonOutput
):
send_feedback(
prompt, function, model, temperature, codeOutput, jsonOutput, "positive"
)
return "Thank you for your feedback. We will use this to improve our service."
def report_issue(prompt, model, temperature, codeOutput, jsonOutput):
print("Reporting issue")
issueTitle = "[bug] OpenFunctions-v2: "
issueBody = f"**Issue Description**\n\nPrompt: {prompt}\n\nModel: {model}\n\nTemperature: {temperature}\n\nOutput (or Error if request failed): {codeOutput} \n\n {jsonOutput}\n\n**Additional Information**\n"
webbrowser.open_new_tab(
f"https://github.com/ShishirPatil/gorilla/issues/new?assignees=&labels=hosted-openfunctions-v2&projects=&template=hosted-openfunctions-v2.md&title=${issueTitle}&body=${issueBody}"
)
def fill_example(index):
prompt = PROMPTS[index]
function = EXAMPLES[index]
model = "gorilla-openfunctions-v2"
return prompt, json.dumps(function, indent=2), model
def cast_multi_param_type(properties):
"""
OpenAI rejects parameters type other than JSON serializable type.
Since our evaluation contains Python specific types, we need some casting
"""
for key, value in properties.items():
if "type" not in value:
properties[key]["type"] = "string"
else:
value["type"] = value["type"].lower()
if value["type"] not in [
"object",
"string",
"number",
"boolean",
"array",
"integer",
]:
properties[key]["type"] = "string"
elif value["type"] == "array" and "items" not in properties[key].keys():
properties[key]["items"] = {"type": "object"}
elif (
value["type"] == "array"
and "type" not in properties[key]["items"].keys()
):
properties[key]["items"]["type"] = "object"
elif value["type"] == "array" and properties[key]["items"]["type"] not in [
"object",
"string",
"number",
"boolean",
"array",
"integer",
]:
properties[key]["items"]["type"] = "string"
return properties
def get_gorilla_response(prompt, function, model, temperature):
requestData = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
"functions": [function],
"temperature": temperature,
}
url = "https://luigi.millennium.berkeley.edu:443/v1/chat/completions"
response = requests.post(
url,
headers={
"Content-Type": "application/json",
"Authorization": "EMPTY", # Hosted for free with β€οΈ from UC Berkeley
},
data=json.dumps(requestData),
)
jsonResponse = response.json()
directCode = jsonResponse["choices"][0]["message"]["content"]
jsonCode = jsonResponse["choices"][0]["message"]["function_call"]
jsonFormatted = json.dumps(jsonCode, indent=2)
return directCode, jsonFormatted
def get_openai_response(prompt, function, model, temperature):
model = model[:-3]
client = OpenAI(api_key=openaiKey)
oai_tool = []
function = json.loads(function)
item = function # use item in the later code
if "." in item["name"]:
item["name"] = re.sub(
r"\.", "_", item["name"]
) # OAI does not support "." in the function name so we replace it with "_". ^[a-zA-Z0-9_-]{1,64}$ is the regex for the name.
item["parameters"][
"type"
] = "object" # If typing is missing, we assume it is an object since OAI requires a type.
if "properties" not in item["parameters"]:
item["parameters"]["properties"] = item["parameters"].copy()
item["parameters"]["type"] = "object"
for key in list(item["parameters"].keys()).copy():
if key != "properties" and key != "type" and key != "required":
del item["parameters"][key]
for key in list(item["parameters"]["properties"].keys()).copy():
if key == "required" or key == "type":
del item["parameters"]["properties"][key]
item["parameters"]["properties"] = cast_multi_param_type(
item["parameters"]["properties"]
)
oai_tool.append({"type": "function", "function": item})
message = [{"role": "user", "content": "Questions: " + prompt}]
if len(oai_tool) > 0:
response = client.chat.completions.create(
messages=message,
model=model,
temperature=temperature,
tools=oai_tool,
)
else:
response = client.chat.completions.create(
messages=message,
model=model,
temperature=temperature,
)
try:
func_call = response.choices[0].message.tool_calls[0]
result = {func_call.function.name: func_call.function.arguments}
try:
key = list(result.keys())[0]
result[key] = json.loads(result[key])
result = json.dumps(result, indent=2)
return "No direct code output for this model.", result
except:
return "No direct code output for this model.", result
except:
result = response.choices[0].message.content
return result, "The model failed to return a JSON output."
def get_mistral_response(prompt, function, model, temperature):
client = MistralClient(api_key=mistralKey)
oai_tool = []
function = json.loads(function)
item = function # use item in the later code
if "." in item["name"]:
item["name"] = re.sub(
r"\.", "_", item["name"]
) # OAI does not support "." in the function name so we replace it with "_". ^[a-zA-Z0-9_-]{1,64}$ is the regex for the name.
item["parameters"][
"type"
] = "object" # If typing is missing, we assume it is an object since OAI requires a type.
if "properties" not in item["parameters"]:
item["parameters"]["properties"] = item["parameters"].copy()
item["parameters"]["type"] = "object"
for key in list(item["parameters"].keys()).copy():
if key != "properties" and key != "type" and key != "required":
del item["parameters"][key]
for key in list(item["parameters"]["properties"].keys()).copy():
if key == "required" or key == "type":
del item["parameters"]["properties"][key]
item["parameters"]["properties"] = cast_multi_param_type(
item["parameters"]["properties"]
)
oai_tool.append({"type": "function", "function": item})
message = [
ChatMessage(role="user", content=prompt),
]
chat_response = client.chat(
model="mistral-large-latest",
messages=message,
tools=oai_tool,
temperature=temperature,
)
try:
func_call = chat_response.choices[0].message.tool_calls[0]
result = {func_call.function.name: func_call.function.arguments}
try:
key = list(result.keys())[0]
result[key] = json.loads(result[key])
result = json.dumps(result, indent=2)
return "No direct code output for this model.", result
except:
return "No direct code output for this model.", result
except:
result = chat_response.choices[0].message.content
return result, "The model failed to return a JSON output."
def distribute_task(prompt, function, model, temperature):
if "gpt" in model:
return get_openai_response(prompt, function, model, temperature)
elif "mistral" in model:
return get_mistral_response(prompt, function, model, temperature)
else:
return get_gorilla_response(prompt, function, model, temperature)
return "", ""
def get_leaderboard():
# Convert the leaderboard data to a pandas DataFrame for easier handling and display
leaderboard_df = pd.DataFrame(DATA, columns=COLUMNS)
leaderboard_df = leaderboard_df.sort_values(by="Rank")
return leaderboard_df
def get_summary():
# Convert the leaderboard data to a pandas DataFrame for easier handling and display
leaderboard_df = pd.DataFrame(DATA_SUMMARY, columns=COLUMNS_SUMMARY)
leaderboard_df = leaderboard_df.sort_values(by="Rank")
return leaderboard_df
prompt = gr.Textbox(label="Prompt", placeholder="Type your prompt here...", lines=4)
funcDescription = gr.Textbox(
label="Function Description", placeholder="Describe the function...", lines=20
)
model = gr.Dropdown(label="Model", choices=MODELS)
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Summary Leaderboard"):
gr.Markdown(
"**This live leaderboard evaluates the LLM's ability to call functions (aka tools) accurately. This leaderboard consists of real-world data and will be updated periodically. For more information on the evaluation dataset and methodology, please refer to our [blog](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html) and [code](https://github.com/ShishirPatil/gorilla).**"
)
gr.Markdown(
"""**AST means evaluation through Abstract Syntax Tree and Exec means evaluation through execution.**
**FC = native support for function/tool calling.**
**Cost is calculated as an estimate of the cost per 1000 function calls, in USD. Latency is measured in seconds.**
**AST Summary is the unweighted average of the four test categories under AST Evaluation. Exec Summary is the unweighted average of the four test categories under Exec Evaluation.**
**Click on column header to sort. If you would like to add your model or contribute test-cases, please contact us via [discord](https://discord.gg/SwTyuTAxX3).**
"""
)
leaderboard_data = gr.Dataframe(value=get_summary(), wrap=True)
with gr.TabItem("Full Leaderboard"):
gr.Markdown(
"**This live leaderboard evaluates the LLM's ability to call functions (aka tools) accurately. This leaderboard consists of real-world data and will be updated periodically. For more information on the evaluation dataset and methodology, please refer to our [blog](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html) and [code](https://github.com/ShishirPatil/gorilla).**"
)
gr.Markdown(
"""**AST means evaluation through Abstract Syntax Tree and Exec means evaluation through execution.**
**FC = native support for function/tool calling.**
**Cost is calculated as an estimate of the cost per 1000 function calls, in USD. Latency is measured in seconds.**
**AST Summary is the unweighted average of the four test categories under AST Evaluation. Exec Summary is the unweighted average of the four test categories under Exec Evaluation.**
**Click on column header to sort. If you would like to add your model or contribute test-cases, please contact us via [discord](https://discord.gg/SwTyuTAxX3).**
"""
)
leaderboard_data = gr.Dataframe(value=get_leaderboard(), wrap=True)
with gr.TabItem("Evaluation Categories"):
gr.Markdown(
"""
# Python Evaluation
**Simple Function** evaluation contains the simplest but most commonly seen format, where the user supplies a single JSON function document, with one and only one function call will be invoked.
**Multiple Function** contains a user question that only invokes one function call out of 2 to 4 JSON function documentations. The model needs to be capable of selecting the best function to invoke according to user provided context.
**Parallel Function** is defined as invoking multiple function calls in parallel with one user query. The model needs to digest how many function calls need to be made and the question to model can be a single sentence or multiple sentence.
**Parallel Multiple Function** is the combination of parallel function and multiple function. In another word, the model is provided with multiple function documentations, each of the corresponding function calls will be invoked zero or more times.
"""
)
gr.Markdown(
"""
# non-Python Evaluation
In **relevance detection**, we design scenarios where none of the provided functions are relevant and supposed to be invoked. We expect the model's output to be no function call. This scenario provides insight to whether a model will hallucinate on its function and parameter to generate function code despite lacking the function information or instructions from the users to do so.
In **REST**, we include real world GET requests to test the model's capabilities to generate executable REST API calls through complex function documentations, using requests.get() along with the API's hardcoded URL and description of the purpose of the function and its parameters. Our evaluation includes two variations. The first type requires passing the parameters inside the URL, called path parameters. The second type requires the model to put parameters as key/value pairs into the params and/or headers of requests.get(.).
In **Java** and **Javascript**, the goal is to understand how well the function calling model can be extended to not just Python type but all the language specific typings such as the HashMap in Java. We included 100 examples for Java AST evaluation and 70 examples for Javascript AST evaluation.
""")
with gr.TabItem("Try It Out"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
example1 = gr.Button("Example 1").click(
fn=lambda: fill_example(0),
outputs=[prompt, funcDescription, model],
)
example2 = gr.Button("Example 2").click(
fn=lambda: fill_example(1),
outputs=[prompt, funcDescription, model],
)
example3 = gr.Button("Example 3").click(
fn=lambda: fill_example(2),
outputs=[prompt, funcDescription, model],
)
with gr.Row():
model.render()
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
)
prompt.render()
funcDescription.render()
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
codeOutput = gr.Textbox(
label="Code Output",
placeholder="Code output will be displayed here...",
lines=7,
)
jsonOutput = gr.Textbox(
label="JSON Format (OpenAI compatible)",
placeholder="JSON format will be displayed here...",
lines=20,
)
with gr.Row():
thumbs_up = gr.Button("π")
thumbs_down = gr.Button("π")
regenerate_button = gr.Button("Regenerate")
report_issue_button = gr.Button("Report Issue")
feedbackMsg = gr.Markdown()
# Actions
submit_button.click(
fn=distribute_task,
inputs=[prompt, funcDescription, model, temperature],
outputs=[codeOutput, jsonOutput],
)
regenerate_button.click(
fn=distribute_task,
inputs=[prompt, funcDescription, model, temperature],
outputs=[codeOutput, jsonOutput],
)
report_issue_button.click(
fn=None,
inputs=[prompt, model, temperature, codeOutput, jsonOutput],
outputs=[],
js='(prompt, model, temperature, codeOutput, jsonOutput) => window.open(`https://github.com/ShishirPatil/gorilla/issues/new?assignees=&labels=hosted-openfunctions-v2&projects=&template=hosted-openfunctions-v2.md&title=[bug] OpenFunctions-v2: &body=**Issue Description**%0A%0APrompt: ${prompt}%0A%0AModel: ${model}%0A%0ATemperature: ${temperature}%0A%0AOutput (or Error if request failed): ${codeOutput} %0A%0A ${jsonOutput}%0A%0A**Additional Information**\n`, "_blank")',
)
thumbs_up.click(
fn=send_feedback_positive,
inputs=[
prompt,
funcDescription,
model,
temperature,
codeOutput,
jsonOutput,
],
outputs=[feedbackMsg],
)
thumbs_down.click(
fn=send_feedback_negative,
inputs=[
prompt,
funcDescription,
model,
temperature,
codeOutput,
jsonOutput,
],
outputs=[feedbackMsg],
)
# with gr.TabItem("Voting Leaderboard"):
# gr.Markdown("## This is a live leaderboard where you can see user's voting result on the agent's response.")
# leaderboard_data = gr.Dataframe(
# value=get_voting_result(), wrap=True
# )
demo.launch()
|