File size: 4,916 Bytes
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
"""

import logging
import math
from typing import Optional, Tuple

import torch
import transformers.models.llama.modeling_llama
from torch import nn

try:
    import xformers.ops
except ImportError:
    logging.error("xformers not found! Please install it before trying to use it.")


def replace_llama_attn_with_xformers_attn():
    transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward


def xformers_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    # pylint: disable=duplicate-code
    bsz, q_len, _ = hidden_states.size()

    query_states = (
        self.q_proj(hidden_states)
        .view(bsz, q_len, self.num_heads, self.head_dim)
        .transpose(1, 2)
    )
    key_states = (
        self.k_proj(hidden_states)
        .view(bsz, q_len, self.num_heads, self.head_dim)
        .transpose(1, 2)
    )
    value_states = (
        self.v_proj(hidden_states)
        .view(bsz, q_len, self.num_heads, self.head_dim)
        .transpose(1, 2)
    )

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    (
        query_states,
        key_states,
    ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
        query_states, key_states, cos, sin, position_ids
    )
    # [bsz, nh, t, hd]

    if past_key_value is not None:
        # reuse k, v, self_attention
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
        value_states = torch.cat([past_key_value[1], value_states], dim=2)

    past_key_value = (key_states, value_states) if use_cache else None

    # We only apply xformers optimizations if we don't need to output the whole attention matrix
    if not output_attentions:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
        # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
        if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
            # input and output should be of form (bsz, q_len, num_heads, head_dim)
            attn_output = xformers.ops.memory_efficient_attention(
                query_states, key_states, value_states, attn_bias=None
            )
        else:
            # input and output should be of form (bsz, q_len, num_heads, head_dim)
            attn_output = xformers.ops.memory_efficient_attention(
                query_states,
                key_states,
                value_states,
                attn_bias=xformers.ops.LowerTriangularMask(),
            )
        attn_weights = None
    else:
        attn_weights = torch.matmul(
            query_states, key_states.transpose(2, 3)
        ) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask
            attn_weights = torch.max(
                attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
            )

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(
            attn_weights, dim=-1, dtype=torch.float32
        ).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
    attn_output = self.o_proj(attn_output)
    return attn_output, attn_weights, past_key_value