Spaces:
Paused
Paused
File size: 8,021 Bytes
cc30486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import numpy as np
import cv2
import functools
import time
from hivisionai.hycv.matting_tools import read_modnet_image
def calTime(mark):
if isinstance(mark, str):
def decorater(func):
@functools.wraps(func)
def wrapper(*args, **kw):
start_time = time.time()
return_param = func(*args, **kw)
print("[Mark-{}] {} 函数花费的时间为 {:.2f}.".format(mark, func.__name__, time.time() - start_time))
return return_param
return wrapper
return decorater
else:
func = mark
@functools.wraps(func)
def wrapper(*args, **kw):
start_time = time.time()
return_param = func(*args, **kw)
print("{} 函数花费的时间为 {:.2f}.".format(func.__name__, time.time() - start_time))
return return_param
return wrapper
def standard_photo_resize(input_image: np.array, size):
"""
input_image: 输入图像,即高清照
size: 标准照的尺寸
"""
resize_ratio = input_image.shape[0] / size[0]
resize_item = int(round(input_image.shape[0] / size[0]))
if resize_ratio >= 2:
for i in range(resize_item - 1):
if i == 0:
result_image = cv2.resize(input_image,
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)),
interpolation=cv2.INTER_AREA)
else:
result_image = cv2.resize(result_image,
(size[1] * (resize_item - i - 1), size[0] * (resize_item - i - 1)),
interpolation=cv2.INTER_AREA)
else:
result_image = cv2.resize(input_image, (size[1], size[0]), interpolation=cv2.INTER_AREA)
return result_image
def hollowOutFix(src: np.ndarray) -> np.ndarray:
b, g, r, a = cv2.split(src)
src_bgr = cv2.merge((b, g, r))
# -----------padding---------- #
add_area = np.zeros((10, a.shape[1]), np.uint8)
a = np.vstack((add_area, a, add_area))
add_area = np.zeros((a.shape[0], 10), np.uint8)
a = np.hstack((add_area, a, add_area))
# -------------end------------ #
_, a_threshold = cv2.threshold(a, 127, 255, 0)
a_erode = cv2.erode(a_threshold, kernel=cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)), iterations=3)
contours, hierarchy = cv2.findContours(a_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = [x for x in contours]
# contours = np.squeeze(contours)
contours.sort(key=lambda c: cv2.contourArea(c), reverse=True)
a_contour = cv2.drawContours(np.zeros(a.shape, np.uint8), contours[0], -1, 255, 2)
# a_base = a_contour[1:-1, 1:-1]
h, w = a.shape[:2]
mask = np.zeros([h + 2, w + 2], np.uint8) # mask必须行和列都加2,且必须为uint8单通道阵列
cv2.floodFill(a_contour, mask=mask, seedPoint=(0, 0), newVal=255)
a = cv2.add(a, 255 - a_contour)
return cv2.merge((src_bgr, a[10:-10, 10:-10]))
def resize_image_by_min(input_image, esp=600):
"""
将图像缩放为最短边至少为600的图像。
:param input_image: 输入图像(OpenCV矩阵)
:param esp: 缩放后的最短边长
:return: 缩放后的图像,缩放倍率
"""
height, width = input_image.shape[0], input_image.shape[1]
min_border = min(height, width)
if min_border < esp:
if height >= width:
new_width = esp
new_height = height * esp // width
else:
new_height = esp
new_width = width * esp // height
return cv2.resize(input_image, (new_width, new_height), interpolation=cv2.INTER_AREA), new_height / height
else:
return input_image, 1
def rotate_bound(image, angle):
"""
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。
"""
# grab the dimensions of the image and then determine the
# center
(h, w) = image.shape[:2]
(cX, cY) = (w / 2, h / 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# perform the actual rotation and return the image
return cv2.warpAffine(image, M, (nW, nH)), cos, sin
def rotate_bound_4channels(image, a, angle):
"""
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。
"""
input_image, cos, sin = rotate_bound(image, angle)
new_a, _, _ = rotate_bound(a, angle) # 对做matte旋转,以便之后merge
b, g, r = cv2.split(input_image)
result_image = cv2.merge((b, g, r, new_a)) # 得到抠图结果图的无损旋转结果
# perform the actual rotation and return the image
return input_image, result_image, cos, sin
def draw_picture_dots(image, dots, pen_size=10, pen_color=(0, 0, 255)):
"""
给一张照片上绘制点。
image: Opencv图像矩阵
dots: 一堆点,形如[(100,100),(150,100)]
pen_size: 画笔的大小
pen_color: 画笔的颜色
"""
if isinstance(dots, dict):
dots = [v for u, v in dots.items()]
image = image.copy()
dots = list(dots)
for dot in dots:
# print("dot: ", dot)
x = dot[0]
y = dot[1]
cv2.circle(image, (int(x), int(y)), pen_size, pen_color, -1)
return image
def get_modnet_matting(input_image, sess, ref_size=512):
"""
使用modnet模型对图像进行抠图处理。
:param input_image: 输入图像(opencv矩阵)
:param sess: onnxruntime推理主体
:param ref_size: 缩放参数
:return: 抠图后的图像
"""
input_name = sess.get_inputs()[0].name
output_name = sess.get_outputs()[0].name
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)
matte = sess.run([output_name], {input_name: im})
matte = (matte[0] * 255).astype('uint8')
matte = np.squeeze(matte)
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
b, g, r = cv2.split(np.uint8(input_image))
output_image = cv2.merge((b, g, r, mask))
return output_image
def detect_distance(value, crop_heigh, max=0.06, min=0.04):
"""
检测人头顶与照片顶部的距离是否在适当范围内。
输入:与顶部的差值
输出:(status, move_value)
status=0 不动
status=1 人脸应向上移动(裁剪框向下移动)
status-2 人脸应向下移动(裁剪框向上移动)
---------------------------------------
value:头顶与照片顶部的距离
crop_heigh: 裁剪框的高度
max: 距离的最大值
min: 距离的最小值
---------------------------------------
"""
value = value / crop_heigh # 头顶往上的像素占图像的比例
if min <= value <= max:
return 0, 0
elif value > max:
# 头顶往上的像素比例高于max
move_value = value - max
move_value = int(move_value * crop_heigh)
# print("上移{}".format(move_value))
return 1, move_value
else:
# 头顶往上的像素比例低于min
move_value = min - value
move_value = int(move_value * crop_heigh)
# print("下移{}".format(move_value))
return -1, move_value
|