File size: 9,360 Bytes
fab8051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""Flask web application for radiology report structuring using Gemini models.

This module provides a web API that structures radiology reports into
semantic sections using LangExtract and Google's Gemini language models.
The application supports caching, multiple model configurations, and
provides both a web interface and REST API endpoints.

Typical usage example:

  # Set environment variables
  export KEY=your_gemini_api_key_here
  export MODEL_ID=gemini-2.5-flash
  
  # Run the application
  python app.py
"""

import logging
import os
import shutil
import tempfile
import time
import json
import hashlib

from flask import Flask, jsonify, render_template, request
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

from cache_manager import CacheManager
from sanitize import preprocess_report
from social_sharing import SocialSharingConfig
from structure_report import RadiologyReportStructurer, ResponseDict

# Configuration constants
MAX_INPUT_LENGTH = 3000

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)


class Model:
    """Manages RadiologyReportStructurer instances for different Gemini model IDs.

    This class handles initialization, caching, and coordination
    of structurer instances for various model configurations, ensuring
    efficient resource usage and consistent API key management.
    """

    def __init__(self):
        """Initializes the Model manager with default structurer.

        Sets up the Gemini API key from environment variables
        and creates a default structurer instance for the configured model.

        Raises:
            ValueError: If the KEY environment variable is not set.
        """
        self.gemini_api_key = os.environ.get("KEY")
        if not self.gemini_api_key:
            logger.error("KEY environment variable not set.")
            raise ValueError("KEY environment variable not set.")

        self._structurers: dict[str, RadiologyReportStructurer] = {}

        default_model_id = os.environ.get("MODEL_ID", "gemini-2.5-flash")
        self._structurers[default_model_id] = RadiologyReportStructurer(
            api_key=self.gemini_api_key,
            model_id=default_model_id,
        )

        logger.info(
            f"RadExtract ready [Worker {os.getpid()}] with model: {default_model_id}"
        )

    def _get_structurer(self, model_id: str) -> RadiologyReportStructurer:
        """Returns a cached or newly created structurer for the given model ID.

        Args:
            model_id: Identifier for the specific model configuration.

        Returns:
            RadiologyReportStructurer instance for the specified model.
        """
        if model_id not in self._structurers:
            logger.info(f"Creating structurer for model: {model_id}")
            self._structurers[model_id] = RadiologyReportStructurer(
                api_key=self.gemini_api_key,
                model_id=model_id,
            )
        return self._structurers[model_id]

    def predict(self, data: str, model_id: str) -> ResponseDict:
        """Processes prediction request using the specified model.

        Args:
            data: Input text data to be processed.
            model_id: Identifier for the model to use for processing.

        Returns:
            Dictionary containing the structured prediction results.
        """
        logger.info(f"Processing prediction with model: {model_id}")
        structurer = self._get_structurer(model_id)
        result = structurer.predict(data)
        logger.info(f"Result preview: {str(result)[:500]}...")
        return result


model = Model()


# Copy prebuilt cache to writable location if it exists
def setup_cache():
    """Sets up the cache directory and copies prebuilt cache files.

    Creates a writable cache directory in /tmp and copies any existing
    prebuilt cache files to ensure the latest version is available.

    Returns:
        Path to the configured cache directory.
    """
    cache_dir = tempfile.gettempdir() + "/cache"
    os.makedirs(cache_dir, exist_ok=True)

    source_cache = "cache/sample_cache.json"
    target_cache = os.path.join(cache_dir, "sample_cache.json")

    if os.path.exists(source_cache) and not os.path.exists(target_cache):
        shutil.copy2(source_cache, target_cache)
        logger.info(f"Initialized cache with {os.path.getsize(target_cache)} bytes")

    return cache_dir


cache_dir = setup_cache()
cache_manager = CacheManager(cache_dir=cache_dir)

app = Flask(
    __name__,
    static_url_path="/static",
    static_folder="static",
    template_folder="templates",
)

# Initialize rate limiter
limiter = Limiter(
    get_remote_address,
    app=app,
    default_limits=[
        os.environ.get("RATE_LIMIT_DAY", "200 per day"),
        os.environ.get("RATE_LIMIT_HOUR", "50 per hour"),
    ],
    storage_uri="memory://",
)


@app.route("/")
def index():
    """Renders the main application interface.

    Returns:
        Rendered HTML template for the application index page.
    """
    # Get social sharing context
    social_context = SocialSharingConfig.get_sharing_context(request.url_root)

    return render_template("index.html", **social_context)


@app.route("/cache/stats")
def cache_stats():
    """Returns cache performance statistics.

    Returns:
        JSON response containing cache usage and performance statistics.
    """
    return jsonify(cache_manager.get_cache_stats())


@app.route("/predict", methods=["POST"])
@limiter.limit(os.environ.get("RATE_LIMIT_PREDICT", "100 per hour"))
def predict():
    """Processes radiology report text and returns structured results.

    Accepts raw text via POST request body with optional headers
    for caching, sample identification, and model selection. Supports
    both cached and real-time processing modes.

    Returns:
        JSON response containing structured report segments, annotations,
        and formatted text. Includes cache status when applicable.

    Raises:
        500: If processing fails due to invalid input or model errors.
    """
    start_time = time.time()

    try:
        data = request.get_data(as_text=True)

        # Validate input to ensure it meets API requirements
        if not data or not data.strip():
            return (
                jsonify(
                    {
                        "error": "Empty input",
                        "message": "Input text is required",
                        "max_length": MAX_INPUT_LENGTH,
                    }
                ),
                400,
            )

        if len(data) > MAX_INPUT_LENGTH:
            return (
                jsonify(
                    {
                        "error": "Input too long",
                        "message": f"Input length ({len(data)} characters) exceeds maximum allowed length of {MAX_INPUT_LENGTH} characters",
                        "max_length": MAX_INPUT_LENGTH,
                    }
                ),
                400,
            )

        use_cache = request.headers.get("X-Use-Cache", "true").lower() == "true"
        sample_id = request.headers.get("X-Sample-ID")
        model_id = request.headers.get(
            "X-Model-ID", os.environ.get("MODEL_ID", "gemini-2.5-flash")
        )
        processed_data = preprocess_report(data)

        if use_cache:
            cached_result = cache_manager.get_cached_result(processed_data, sample_id)
            if cached_result:
                req_id = hashlib.md5(
                    f"{request.remote_addr}{int(time.time()/3600)}".encode()
                ).hexdigest()[:8]
                logger.info(
                    f"🟢 CACHE HIT [Req {req_id}] [Worker {os.getpid()}] - Returning cached result (no API call)"
                )
                return jsonify({"from_cache": True, **cached_result})

        try:
            req_id = hashlib.md5(
                f"{request.remote_addr}{int(time.time()/3600)}".encode()
            ).hexdigest()[:8]
            logger.info(
                f"🔴 API CALL [Req {req_id}] [Worker {os.getpid()}] - Processing with Gemini model: {model_id}"
            )
            result = model.predict(processed_data, model_id=model_id)

            if use_cache:
                cache_manager.cache_result(processed_data, result, sample_id)

            result["sanitized_input"] = processed_data

            return jsonify(result)

        except TypeError as te:
            error_msg = str(te)
            logger.error(f"TypeError in prediction: {error_msg}", exc_info=True)

            return (
                jsonify({"error": "Processing error. Please try a different input."}),
                500,
            )
    except Exception as e:
        logger.error(f"Prediction error: {str(e)}", exc_info=True)

        return jsonify({"error": str(e)}), 500


@app.errorhandler(429)
def ratelimit_handler(e):
    """Handle rate limit exceeded errors."""
    return (
        jsonify(
            {
                "error": "Rate limit exceeded. Please try again later.",
                "message": str(e.description),
            }
        ),
        429,
    )


if __name__ == "__main__":
    logger.info("Starting development server")
    app.run(host="0.0.0.0", port=7870, debug=True)