File size: 26,122 Bytes
fab8051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
"""Core radiology report structuring functionality using LangExtract.

This module provides the RadiologyReportStructurer class that processes raw
radiology reports into structured segments categorized as prefix, body, or suffix sections with clinical significance annotations (normal, minor, significant).

The structuring uses LangExtract with example-guided prompting to extract segments with character intervals that enable interactive hover-to-highlight functionality in the web frontend.

Backend-Frontend Integration:
- Backend generates segments with character intervals (startPos/endPos)
- Frontend creates interactive spans that highlight corresponding input text on hover
- Significance levels drive CSS styling for visual differentiation
- Segment types organize content into structured sections (EXAMINATION, FINDINGS, IMPRESSION)

Example usage:

    structurer = RadiologyReportStructurer(
        api_key="your_api_key",
        model_id="gemini-2.5-flash"
    )
    result = structurer.predict("FINDINGS: Normal chest CT...")
"""

import collections
import dataclasses
import itertools
from enum import Enum
from functools import wraps
from typing import Any, TypedDict

import langextract as lx
import langextract.data

import prompt_instruction
import prompt_lib
import report_examples


class FrontendIntervalDict(TypedDict):
    """Character interval for frontend with startPos and endPos."""

    startPos: int
    endPos: int


class SegmentDict(TypedDict):
    """Segment dictionary for JSON response."""

    type: str
    label: str | None
    content: str
    intervals: list[FrontendIntervalDict]
    significance: str | None


class SerializedExtractionDict(TypedDict):
    """Serialized extraction for JSON response."""

    extraction_text: str | None
    extraction_class: str | None
    attributes: dict[str, str] | None
    char_interval: dict[str, int | None] | None
    alignment_status: str | None


class ResponseDict(TypedDict):
    """Complete response dictionary structure."""

    segments: list[SegmentDict]
    annotated_document_json: dict[str, Any]
    text: str
    raw_prompt: str


FINDINGS_HEADER = "FINDINGS:"
IMPRESSION_HEADER = "IMPRESSION:"
EXAMINATION_HEADER = "EXAMINATION:"
SECTION_ATTRIBUTE_KEY = "section"
START_POSITION = "startPos"
END_POSITION = "endPos"

EXAM_PREFIXES = ("EXAMINATION:", "EXAM:", "STUDY:")

EXAMINATION_LABEL = "examination"
PREFIX_LABEL = "prefix"

SIGNIFICANCE_NORMAL = "normal"
SIGNIFICANCE_MINOR = "minor"
SIGNIFICANCE_SIGNIFICANT = "significant"
SIGNIFICANCE_NOT_APPLICABLE = "not_applicable"


def _initialize_langextract_patches():
    """Initialize LangExtract patches for proper alignment behavior.

    This function applies necessary patches to LangExtract's Resolver.align method to force accept_match_lesser=False and set fuzzy_alignment_threshold to 0.50. This should be called before using LangExtract functionality.

    Note: This is a temporary workaround until LangExtract exposes
    accept_match_lesser and fuzzy_alignment_threshold parameters via its public API.
    """
    # Store original method
    original_align = lx.resolver.Resolver.align

    @wraps(original_align)
    def _align_patched(self, *args, **kwargs):
        # Set default if not explicitly provided
        kwargs.setdefault("accept_match_lesser", False)
        # Set fuzzy matching threshold to 0.50
        kwargs.setdefault("fuzzy_alignment_threshold", 0.50)
        return original_align(self, *args, **kwargs)

    # Apply the patch
    lx.resolver.Resolver.align = _align_patched


class ReportSectionType(Enum):
    """Enum representing sections of a radiology report with their extraction class names."""

    PREFIX = "findings_prefix"
    BODY = "findings_body"
    SUFFIX = "findings_suffix"

    @property
    def display_name(self) -> str:
        """Returns the lowercase section type name for display purposes."""
        return self.name.lower()


@dataclasses.dataclass
class Segment:
    """Represents a single merged segment of text in the final structured report.

    Attributes:
        type: The section type (prefix, body, or suffix).
        label: Optional section label for organization.
        content: The text content of this segment.
        intervals: List of character position intervals.
        significance: Optional clinical significance indicator.
    """

    type: ReportSectionType
    label: str | None
    content: str
    intervals: list[FrontendIntervalDict]
    significance: str | None = None

    def to_dict(self) -> SegmentDict:
        """Converts the segment to a dictionary representation.

        Returns:
            A dictionary containing all segment data with type as display name.
        """
        return SegmentDict(
            type=self.type.display_name,
            label=self.label,
            content=self.content,
            intervals=self.intervals,
            significance=self.significance,
        )


class RadiologyReportStructurer:
    """Structures radiology reports using LangExtract and large language models.

    This class processes raw radiology report text and converts it
    into structured segments categorized as prefix, body, or suffix
    sections with appropriate labeling and clinical significance annotations.
    """

    api_key: str | None
    model_id: str
    temperature: float
    examples: list[langextract.data.ExampleData]
    _patches_initialized: bool

    def __init__(
        self,
        api_key: str | None = None,
        model_id: str = "gemini-2.5-flash",
        temperature: float = 0.0,
    ):
        """Initializes the RadiologyReportStructurer.

        Args:
            api_key: API key for the language model service.
            model_id: Identifier for the specific model to use.
            temperature: Sampling temperature for model generation.
        """
        self.api_key = api_key
        self.model_id = model_id
        self.temperature = temperature
        self.examples = report_examples.get_examples_for_model()
        self._patches_initialized = False

    def _ensure_patches_initialized(self):
        """Ensure LangExtract patches are initialized before use."""
        if not self._patches_initialized:
            _initialize_langextract_patches()
            self._patches_initialized = True

    def _generate_formatted_prompt_with_examples(
        self, input_text: str | None = None
    ) -> str:
        """Generates a comprehensive, markdown-formatted prompt including examples.

        Args:
            input_text: Optional input text to include in the prompt display.

        Returns:
            A markdown-formatted string containing the full prompt and examples.
        """
        return prompt_lib.generate_markdown_prompt(self.examples, input_text)

    def predict(self, report_text: str, max_char_buffer: int = 2000) -> ResponseDict:
        """Processes a radiology report text into structured format.

        Takes raw radiology report text and uses LangExtract with example-guided
        prompting to extract structured segments with character intervals and
        clinical significance annotations.

        Args:
            report_text: Raw radiology report text to be processed.
            max_char_buffer: Maximum character buffer size for processing.

        Returns:
            A dictionary containing:
                - segments: List of structured report segments
                - annotated_document_json: Raw extraction results
                - text: Formatted text representation

        Raises:
            ValueError: If report_text is empty or whitespace-only.
        """
        if not report_text.strip():
            raise ValueError("Report text cannot be empty")

        try:
            result = self._perform_langextract(report_text, max_char_buffer)
            return self._build_response(result, report_text)
        except (ValueError, TypeError, AttributeError) as e:
            return ResponseDict(
                text=f"Error processing report: {str(e)}",
                segments=[],
                annotated_document_json={},
                raw_prompt="",
            )

    def _perform_langextract(
        self, report_text: str, max_char_buffer: int
    ) -> langextract.data.AnnotatedDocument:
        """Performs LangExtract processing on the input text.

        Args:
            report_text: Raw radiology report text to be processed.
            max_char_buffer: Maximum character buffer size for processing.

        Returns:
            LangExtract result object containing extractions.

        Raises:
            ValueError: If LangExtract processing fails.
            TypeError: If invalid parameters are provided.
        """
        self._ensure_patches_initialized()
        return lx.extract(
            text_or_documents=report_text,
            prompt_description=prompt_instruction.PROMPT_INSTRUCTION.split(
                "# Few-Shot Examples"
            )[0],
            examples=self.examples,
            model_id=self.model_id,
            api_key=self.api_key,
            max_char_buffer=max_char_buffer,
            temperature=self.temperature,
            # accept_match_lesser handled via monkey-patch
            # (Resolver.align patched at import time)
        )

    def _build_response(
        self, result: langextract.data.AnnotatedDocument, report_text: str
    ) -> ResponseDict:
        """Builds the final response dictionary from LangExtract results.

        Args:
            result: LangExtract result object containing extractions.
            report_text: Original input text for prompt generation.

        Returns:
            Dictionary containing structured segments and metadata.
        """
        segments = self._build_segments_from_langextract_result(result)
        organized_segments = self._organize_segments_by_label(segments)

        response: ResponseDict = {
            "segments": [segment.to_dict() for segment in organized_segments],
            "annotated_document_json": self._serialize_extraction_results(result),
            "text": self._format_segments_to_text(organized_segments),
            "raw_prompt": self._generate_formatted_prompt_with_examples(report_text),
        }

        return response

    def _serialize_extraction_results(
        self, result: langextract.data.AnnotatedDocument
    ) -> dict[str, Any]:
        """Serializes LangExtract results for JSON response.

        Args:
            result: LangExtract result object containing extractions.

        Returns:
            Dictionary containing serialized extraction data or error information.
        """
        try:
            if not hasattr(result, "extractions"):
                return {"error": "No extractions found in result"}

            return {
                "extractions": [
                    self._serialize_single_extraction(extraction)
                    for extraction in result.extractions
                ]
            }
        except (AttributeError, TypeError, KeyError) as e:
            return {
                "error": "Failed to serialize extraction result",
                "error_message": str(e),
                "fallback_string": str(result),
            }

    def _serialize_single_extraction(
        self, extraction: langextract.data.Extraction
    ) -> SerializedExtractionDict:
        """Serializes a single extraction to dictionary format."""
        return {
            "extraction_text": extraction.extraction_text,
            "extraction_class": extraction.extraction_class,
            "attributes": extraction.attributes,
            "char_interval": self._extract_char_interval(extraction),
            "alignment_status": self._get_alignment_status_string(extraction),
        }

    def _get_alignment_status_string(
        self, extraction: langextract.data.Extraction
    ) -> str | None:
        """Extracts alignment status from extraction as string."""
        status = getattr(extraction, "alignment_status", None)
        return str(status) if status is not None else None

    def _build_segments_from_langextract_result(
        self, result: langextract.data.AnnotatedDocument
    ) -> list[Segment]:
        """Builds segments from LangExtract result data using one-segment-per-interval strategy.

        Creates exactly one segment per character interval to enable precise
        frontend hover-to-highlight functionality. Processes only
        langextract.data.Extraction objects for consistent typing.

        Args:
            result: LangExtract result object containing extractions.

        Returns:
            List of Segment objects optimized for frontend rendering and interaction.
        """
        segments_list = []

        for extraction in result.extractions:
            section_type = self._map_section(extraction.extraction_class)

            if section_type is None:
                continue

            section_label = self._determine_section_label(
                extraction.attributes, section_type
            )
            significance_val = self._extract_clinical_significance(
                extraction.attributes
            )
            intervals = self._get_intervals_from_extraction_dict(
                extraction, extraction.char_interval
            )

            segments_list.extend(
                self._create_segments_for_intervals(
                    section_type,
                    section_label,
                    extraction.extraction_text,
                    intervals,
                    significance_val,
                )
            )

        return segments_list

    def _determine_section_label(
        self,
        attributes: dict[str, str] | None,
        section_type: ReportSectionType,
    ) -> str:
        """Determines the appropriate section label for a segment."""
        if attributes and isinstance(attributes, dict):
            section_label = attributes.get(SECTION_ATTRIBUTE_KEY)
            if section_label:
                return section_label
        return section_type.display_name

    def _extract_clinical_significance(
        self, attributes: dict[str, str] | None
    ) -> str | None:
        """Extracts clinical significance from attributes safely."""
        if not attributes or not isinstance(attributes, dict):
            return None

        try:
            sig_raw = attributes.get("clinical_significance")
            if sig_raw is not None:
                return getattr(sig_raw, "value", str(sig_raw)).lower()
        except (AttributeError, TypeError):
            pass
        return None

    def _create_segments_for_intervals(
        self,
        section_type: ReportSectionType,
        section_label: str,
        content: str,
        intervals: list[FrontendIntervalDict],
        significance: str | None,
    ) -> list[Segment]:
        """Creates segment objects for the given intervals."""
        if not intervals:
            return [
                Segment(
                    type=section_type,
                    label=section_label,
                    content=content,
                    intervals=[],
                    significance=significance,
                )
            ]
        return [
            Segment(
                type=section_type,
                label=section_label,
                content=content,
                intervals=[interval],
                significance=significance,
            )
            for interval in intervals
        ]

    def _map_section(self, extraction_class: str) -> ReportSectionType | None:
        """Maps extraction class string to ReportSectionType enum."""
        extraction_class = extraction_class.lower().strip()

        for section_type in ReportSectionType:
            if section_type.value == extraction_class:
                return section_type

        return None

    def _get_intervals_from_extraction_dict(
        self,
        extraction: langextract.data.Extraction,
        char_interval: langextract.data.CharInterval | dict[str, int] | None = None,
    ) -> list[FrontendIntervalDict]:
        """Extracts character intervals from extraction data.

        Returns a list of interval dictionaries from the extraction's
        char_interval in the format expected by the frontend.

        Args:
            extraction: langextract.data.Extraction object containing interval data.
            char_interval: Optional override for character interval data.

        Returns:
            List of dictionaries with startPos and endPos keys.
        """
        interval_list = []
        try:
            char_interval = (
                char_interval if char_interval is not None else extraction.char_interval
            )

            if char_interval is not None:
                # Handle both dict and object formats for char_interval (langextract.data.CharInterval object or dict override)
                if isinstance(char_interval, dict):
                    start_pos = char_interval.get("start_pos")
                    end_pos = char_interval.get("end_pos")
                else:
                    start_pos = getattr(char_interval, "start_pos", None)
                    end_pos = getattr(char_interval, "end_pos", None)

                start_position, end_position = self._extract_positions(
                    start_pos, end_pos
                )
                if start_position is not None and end_position is not None:
                    interval_list.append(
                        FrontendIntervalDict(
                            startPos=start_position, endPos=end_position
                        )
                    )
        except Exception:
            pass
        return interval_list

    def _extract_positions(self, start_obj, end_obj) -> tuple[int | None, int | None]:
        """Extracts position integers from potentially complex objects.

        Handles possible slice objects or direct integers for start and end positions.
        """
        if hasattr(start_obj, "start"):
            start_obj = start_obj.start
        if hasattr(end_obj, "stop"):
            end_obj = end_obj.stop

        try:
            start_position = int(start_obj) if start_obj is not None else None
            end_position = int(end_obj) if end_obj is not None else None
            if start_position is not None and end_position is not None:
                return (start_position, end_position)
        except Exception:
            pass
        return (None, None)

    def _extract_char_interval(
        self, extraction: langextract.data.Extraction
    ) -> dict[str, int | None] | None:
        """Extracts character interval information from an extraction."""
        char_interval = extraction.char_interval
        if char_interval is None:
            return None

        return {
            "start_pos": getattr(char_interval, "start_pos", None),
            "end_pos": getattr(char_interval, "end_pos", None),
        }

    def _format_segments_to_text(self, segments: list[Segment]) -> str:
        """Formats segments into a readable text representation.

        Merges segments with the same label into coherent paragraphs
        while preserving the original order of labels as they appear
        in the document.
        """
        grouped = self._group_segments_by_type_and_label(segments)
        formatted_parts: list[str] = []

        self._render_prefix_sections(grouped, segments, formatted_parts)
        self._render_body_sections(grouped, formatted_parts)
        self._render_suffix_sections(grouped, formatted_parts)

        return "\n".join(formatted_parts).rstrip()

    def _group_segments_by_type_and_label(
        self, segments: list[Segment]
    ) -> collections.OrderedDict[tuple[ReportSectionType, str | None], list[str]]:
        """Groups segments by (type, label) preserving insertion order.

        Creates a dictionary keyed by (ReportSectionType, label) tuples
        that maintains the order segments are first encountered.
        Deduplicates content within each group while preserving
        the original sequence of unique content items.

        Args:
            segments: List of Segment objects to group.

        Returns:
            OrderedDict mapping (type, label) tuples to lists of unique content strings.
        """
        grouped: collections.OrderedDict[
            tuple[ReportSectionType, str | None], list[str]
        ] = collections.OrderedDict()
        for seg in segments:
            key = (seg.type, seg.label)
            grouped.setdefault(key, [])
            if seg.content not in grouped[key]:
                grouped[key].append(seg.content.strip())
        return grouped

    def _render_prefix_sections(
        self,
        grouped: collections.OrderedDict[
            tuple[ReportSectionType, str | None], list[str]
        ],
        segments: list[Segment],
        formatted_parts: list[str],
    ) -> None:
        """Renders PREFIX sections with appropriate headers."""
        add = formatted_parts.append

        def blank() -> None:
            formatted_parts.append("")

        structured_prefix_exists = any(
            seg.type == ReportSectionType.PREFIX
            and seg.label
            and seg.label.lower() != PREFIX_LABEL
            for seg in segments
        )

        if structured_prefix_exists:
            for (stype, label), contents in grouped.items():
                if stype is not ReportSectionType.PREFIX:
                    continue

                if label and label.lower() == EXAMINATION_LABEL:
                    add(EXAMINATION_HEADER)
                    blank()
                    for c in contents:
                        stripped = self._strip_exam_prefix(c)
                        if stripped:
                            add(stripped)
                    blank()
                elif label and label.lower() != PREFIX_LABEL:
                    for c in contents:
                        if c:
                            add(c)
                    blank()
                else:
                    for c in contents:
                        if c:
                            add(c)
                    blank()
        else:
            plain_prefix = []
            for (stype, _), contents in grouped.items():
                if stype is ReportSectionType.PREFIX:
                    plain_prefix.extend(contents)
            if plain_prefix:
                add("\n\n".join(plain_prefix).rstrip())

    def _render_body_sections(
        self,
        grouped: collections.OrderedDict[
            tuple[ReportSectionType, str | None], list[str]
        ],
        formatted_parts: list[str],
    ) -> None:
        """Renders BODY (FINDINGS) sections."""
        add = formatted_parts.append

        def blank() -> None:
            formatted_parts.append("")

        body_items = [
            (k, v) for k, v in grouped.items() if k[0] is ReportSectionType.BODY
        ]
        if body_items:
            if formatted_parts:
                blank()
            add(FINDINGS_HEADER)
            blank()
            for (_, label), contents in body_items:
                combined = " ".join(contents).strip()
                if combined:
                    add(f"{label}: {combined}")
                    blank()

    def _render_suffix_sections(
        self,
        grouped: collections.OrderedDict[
            tuple[ReportSectionType, str | None], list[str]
        ],
        formatted_parts: list[str],
    ) -> None:
        """Renders SUFFIX (IMPRESSION) sections."""
        add = formatted_parts.append

        def blank() -> None:
            formatted_parts.append("")

        suffix_items = [
            (k, v) for k, v in grouped.items() if k[0] is ReportSectionType.SUFFIX
        ]
        if suffix_items:
            if formatted_parts and formatted_parts[-1].strip():
                blank()
            add(IMPRESSION_HEADER)
            blank()
            suffix_block = "\n".join(
                itertools.chain.from_iterable(v for _, v in suffix_items)
            ).rstrip()
            add(suffix_block)

    def _organize_segments_by_label(self, segments: list[Segment]) -> list[Segment]:
        """Organizes segments into the correct order for presentation.

        Orders segments by section type (prefix → body → suffix), groups
        body segments by label while preserving original appearance order,
        and maintains extraction order for segments with the same label.

        Args:
            segments: List of Segment objects to organize.

        Returns:
            List of segments in proper presentation order.
        """
        prefix_segments = [
            segment for segment in segments if segment.type == ReportSectionType.PREFIX
        ]
        body_segments = [
            segment for segment in segments if segment.type == ReportSectionType.BODY
        ]
        suffix_segments = [
            segment for segment in segments if segment.type == ReportSectionType.SUFFIX
        ]

        body_segments_by_label: dict[str, list[Segment]] = {}
        labels_in_order: list[str] = []

        for segment in body_segments:
            if segment.label:
                if segment.label not in body_segments_by_label:
                    body_segments_by_label[segment.label] = []
                    labels_in_order.append(segment.label)
                body_segments_by_label[segment.label].append(segment)

        organized_segments = []
        organized_segments.extend(prefix_segments)

        for label in labels_in_order:
            organized_segments.extend(body_segments_by_label[label])

        organized_segments.extend(suffix_segments)

        return organized_segments

    def _strip_exam_prefix(self, text: str) -> str:
        """Removes common examination prefixes from a string."""
        upper = text.upper()
        for prefix in EXAM_PREFIXES:
            if upper.startswith(prefix):
                return text[len(prefix) :].lstrip()
        return text.strip()