Spaces:
Sleeping
Sleeping
File size: 6,330 Bytes
85e4b4a fde64cd 233bda6 fde64cd 85e4b4a bd9fe6e 85e4b4a bd9fe6e fde64cd 85e4b4a 3de602a 85e4b4a 3de602a 85e4b4a 3de602a 85e4b4a 3de602a 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 3de602a 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 19f2fac 85e4b4a 3de602a 85e4b4a 19f2fac 3de602a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
import pandas as pd
from PIL import Image
# Define your sections and labels
SECTION_LABELS = {
"Oil Pore Related Issues": [
"Very Large Pores (Not Red)",
"Whiteheads (Clogged Pores)",
"Blackheads (Clogged Pores)",
"Shinny Skin",
"Sebaceous Filaments (Sebum)"
],
"Acne and Blemishes": [
"Pustules",
"Papules",
"Nodules",
"Cysts",
"Rosacea",
"Telangiectasia",
"Milia",
"Scars",
"Ice Berg Scars",
],
"Redness and Irritation": [
"Redness",
"Irritation",
],
"Dryness and Texture Issues": [
"Dryness",
"Fine Lines / Wrinkles",
"Skin Flakes"
],
"Aging and Elasticity Issues": [
"Loose Skin",
"Deep Wrinkles"
],
"Pigmentation Issues": [
"Dark Spots",
"Melasma",
"Freckles"
]
}
# Flattened labels list
ALL_LABELS = [label for labels in SECTION_LABELS.values() for label in labels]
# Global state
images = []
current_index = 0
results = []
annotations = {}
# Core functions
def display_image(idx):
if images:
img = Image.open(images[idx])
fname = images[idx].split('/')[-1]
tick = ' ✅' if idx in annotations else ''
caption = f"{fname} ({idx+1}/{len(images)}){tick}"
states = annotations.get(idx, [False] * len(ALL_LABELS))
return [img, caption] + states
return [None, "No images uploaded"] + [False] * len(ALL_LABELS)
def navigate(delta):
global current_index
current_index = (current_index + delta) % len(images)
return display_image(current_index)
def submit(*selections):
if not images:
# Return status and no file
return "No image to label", None
# Save selections
annotations[current_index] = list(selections)
fname = images[current_index].split('/')[-1]
chosen = [lbl for lbl, sel in zip(ALL_LABELS, selections) if sel]
global results
results = [r for r in results if r['image'] != fname]
results.append({'image': fname, 'labels': ', '.join(chosen)})
# Write CSV
df = pd.DataFrame(results)
df.to_csv('image_labels.csv', index=False)
# Return status message and CSV path
return "Labels saved!", 'image_labels.csv'
def upload(files):
global images, current_index, results, annotations
images = [f.name if hasattr(f, 'name') else f for f in files]
current_index = 0
results = []
annotations = {}
outputs = display_image(0)
# hide uploader after upload
return outputs + [gr.update(visible=False)]
with gr.Blocks() as demo: # You can add a theme here, e.g., theme=gr.themes.Soft()
gr.Markdown("## Dermo Annotator")
file_upload = gr.File(label="Upload Images", file_count="multiple", file_types=["image"])
checkbox_components = []
# Define the sections for each column explicitly based on "new.png"
column1_sections = ["Oil Pore Related Issues", "Dryness and Texture Issues"]
column2_sections = ["Acne and Blemishes"]
column3_sections = ["Redness and Irritation", "Pigmentation Issues", "Aging and Elasticity Issues"]
with gr.Row(): # Main row to hold the three columns
# Column 1
with gr.Column():
for section_name in column1_sections:
if section_name in SECTION_LABELS:
with gr.Group(): # Using Group for a card-like feel
gr.Markdown(f"### {section_name}")
for lbl in SECTION_LABELS[section_name]:
cb = gr.Checkbox(label=lbl)
checkbox_components.append(cb)
# Column 2
with gr.Column():
for section_name in column2_sections:
if section_name in SECTION_LABELS:
with gr.Group(): # Using Group for a card-like feel
gr.Markdown(f"### {section_name}")
for lbl in SECTION_LABELS[section_name]:
cb = gr.Checkbox(label=lbl)
checkbox_components.append(cb)
# Column 3
with gr.Column():
for section_name in column3_sections:
if section_name in SECTION_LABELS:
with gr.Group(): # Using Group for a card-like feel
gr.Markdown(f"### {section_name}")
for lbl in SECTION_LABELS[section_name]:
cb = gr.Checkbox(label=lbl)
checkbox_components.append(cb)
# Image display and controls (no change to this part from your original code)
with gr.Row():
with gr.Column(scale=2): # Make image column potentially wider
img = gr.Image(label="Image")
caption = gr.Label(value="No images uploaded")
with gr.Row():
prev_btn = gr.Button("⬅️ Previous")
next_btn = gr.Button("Next ➡️")
with gr.Column(scale=1): # Make controls column narrower
submit_btn = gr.Button("Submit Labels")
status = gr.Label()
csv_downloader = gr.File(label="Download labels CSV")
# Wire events (ensure checkbox_components is correctly populated)
# (This part of your code for wiring events remains the same)
file_upload.upload(
fn=upload,
inputs=file_upload,
outputs=[img, caption] + checkbox_components + [file_upload]
)
prev_btn.click(
fn=lambda: navigate(-1), # Ensure navigate uses global current_index and images
outputs=[img, caption] + checkbox_components
)
next_btn.click(
fn=lambda: navigate(1), # Ensure navigate uses global current_index and images
outputs=[img, caption] + checkbox_components
)
submit_btn.click(
fn=submit, # Ensure submit uses global current_index, images, results, annotations
inputs=checkbox_components,
outputs=[status, csv_downloader]
)
if __name__ == "__main__":
# Make sure your SECTION_LABELS, ALL_LABELS, and functions (upload, display_image, navigate, submit)
# are defined before this demo block or are accessible in the global scope.
demo.launch(server_name="0.0.0.0", server_port=7860) |