File size: 9,159 Bytes
1ebef6f
4da2d90
 
 
 
69d6988
4da2d90
 
 
 
 
baaa2b9
f8ce661
4da2d90
e8864dd
 
4da2d90
e3799c1
 
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3799c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2d90
e8864dd
4da2d90
 
049cb5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
049cb5a
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1b905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3799c1
5f1b905
4da2d90
e8864dd
 
5f1b905
 
e8864dd
 
5f1b905
e8864dd
4da2d90
5f1b905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import spaces
import os
import requests
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from PIL import Image
from RealESRGAN import RealESRGAN
import cv2
import numpy as np
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

# Set up the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# Function to download files (from the example)
def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

# Download necessary models and files
def download_models():
    models = {
        "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
        "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
        "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
        "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
        "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
        "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
        "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
        "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
        "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
    }

    for model, (url, folder, filename) in models.items():
        download_file(url, folder, filename)

download_models()




class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)

    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

# Initialize the lazy models
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

def resize_and_upscale(input_image, resolution):
    scale = 2
    if resolution == 2048:
        init_w = 1024
    elif resolution == 2560:
        init_w = 1280
    elif resolution == 3072:
        init_w = 1536
    else:
        init_w = 1024
        scale = 4

    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(init_w) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    model = RealESRGAN(device, scale=scale)
    model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False)
    img = model.predict(img)
    if scale == 2:
        img = lazy_realesrgan_x2.predict(img)
    else:
        img = lazy_realesrgan_x4.predict(img)
    return img

def calculate_brightness_factors(hdr_intensity):
    factors = [1.0] * 9
    if hdr_intensity > 0:
        factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity,
                   1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity,
                   1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity]
    return factors

def pil_to_cv(pil_image):
    return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

def adjust_brightness(cv_image, factor):
    hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
    h, s, v = cv2.split(hsv_image)
    v = np.clip(v * factor, 0, 255).astype('uint8')
    adjusted_hsv = cv2.merge([h, s, v])
    return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)

def create_hdr_effect(original_image, hdr):
    cv_original = pil_to_cv(original_image)
    brightness_factors = calculate_brightness_factors(hdr)
    images = [adjust_brightness(cv_original, factor) for factor in brightness_factors]

    merge_mertens = cv2.createMergeMertens()
    hdr_image = merge_mertens.process(images)
    hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
    hdr_image_pil = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

    return hdr_image_pil

class ImageProcessor:
    def __init__(self):
        self.pipe = self.setup_pipeline()

    def setup_pipeline(self):
        controlnet = ControlNetModel.from_single_file(
            "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
        )
        safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

        model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
            model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            safety_checker=safety_checker
        )

        vae = AutoencoderKL.from_single_file(
            "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
            torch_dtype=torch.float16
        )
        pipe.vae = vae

        pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
        pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
        pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
        pipe.fuse_lora(lora_scale=0.5)
        pipe.load_lora_weights("models/Lora/more_details.safetensors")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)

        return pipe


image_processor = ImageProcessor()

@spaces.GPU
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
    image_processor.pipe = image_processor.pipe.to(device)
    image_processor.pipe.unet.set_attn_processor(AttnProcessor2_0())
    prompt = "masterpiece, best quality, highres"
    negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
    result = image_processor.process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
    return result

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Enhancement with Stable Diffusion")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.Button("Enhance Image")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Enhanced Image")
    with gr.Accordion("Advanced Options", open=False):
        resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
        num_inference_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Number of Inference Steps")
        strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
        hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")

    run_button.click(fn=gradio_process_image, 
                     inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
                     outputs=output_image)

demo.launch(share=True)