File size: 10,061 Bytes
4659d74
 
 
2bf9b81
4659d74
13cefbc
4659d74
 
 
 
 
 
 
 
 
 
cec9f33
 
 
4659d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13cefbc
 
 
 
4659d74
 
 
 
 
 
13cefbc
 
2bf9b81
 
 
 
13cefbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4659d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39083d
4659d74
 
 
 
 
 
 
 
 
 
 
 
a39083d
4659d74
e58293e
4659d74
 
 
c208235
a39083d
90a65c0
2bf9b81
 
 
 
13cefbc
 
 
 
4659d74
 
 
 
 
 
a39083d
4659d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f81779
4659d74
1f81779
 
 
4659d74
 
1f81779
 
4659d74
 
 
 
 
 
 
 
 
90a65c0
a39083d
4659d74
90a65c0
 
4659d74
 
 
 
 
 
 
 
 
a39083d
4659d74
 
 
 
 
e58293e
4659d74
 
 
 
 
 
90a65c0
a39083d
 
4659d74
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
from transformers import AutoProcessor, AutoModelForCausalLM
import re
import random
import os
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import UNet2DConditionModel, AutoencoderKL
from diffusers import EulerDiscreteScheduler

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

# Download Kolors model
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")

# Load Kolors models
text_encoder = ChatGLMModel.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'), torch_dtype=dtype).to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'))
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).to(dtype).to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler"))
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).to(dtype).to(device)

kolors_pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
).to(device)

# VLM Captioner
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")

# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = 2**32 - 1

# Florence caption function
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<MORE_DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]

# VLM Captioner function
def create_captions_rich(image):
    prompt = "caption en"
    model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
    input_len = model_inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
        generation = generation[0][input_len:]
        decoded = vlm_processor.decode(generation, skip_special_tokens=True)

    return modify_caption(decoded)

# Helper function for caption modification
def modify_caption(caption: str) -> str:
    prefix_substrings = [
        ('captured from ', ''),
        ('captured at ', '')
    ]
    pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
    replacers = {opening: replacer for opening, replacer in prefix_substrings}
    
    def replace_fn(match):
        return replacers[match.group(0)]
    
    return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)

# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
    if model_choice == "Medium":
        result = enhancer_medium("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
        
        pattern = r'^.*?of\s+(.*?(?:\.|$))'
        match = re.match(pattern, enhanced_text, re.IGNORECASE | re.DOTALL)
        
        if match:
            remaining_text = enhanced_text[match.end():].strip()
            modified_sentence = match.group(1).capitalize()
            enhanced_text = modified_sentence + ' ' + remaining_text
    else:  # Long
        result = enhancer_long("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    
    return enhanced_text

def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images_per_prompt):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = kolors_pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        num_images_per_prompt=num_images_per_prompt,
        generator=generator
    ).images
    
    return image, seed

@spaces.GPU(duration=200)
def process_workflow(image, text_prompt, vlm_model_choice, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images_per_prompt):
    if image is not None:
        # Convert image to PIL if it's not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        if vlm_model_choice == "Long Captioner":
            prompt = create_captions_rich(image)
        else:  # Florence
            prompt = florence_caption(image)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt, model_choice)
    
    generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images_per_prompt)
    
    return generated_image, prompt, used_seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">Kolors with VLM Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/Kwai-Kolors/Kolors" target="_blank">[Kolors Model]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/sd3-long-captioner-v2" target="_blank">[Long Captioner Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>

<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (VLM Captioner)")
                vlm_model_choice = gr.Radio(["Florence-2", "Long Captioner"], label="VLM Model", value="Florence-2")
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Long")
                negative_prompt = gr.Textbox(label="Negative Prompt")
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
                height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=5.0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=20, maximum=50, step=1, value=20)
                num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt")
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, vlm_model_choice, use_enhancer, model_choice,
            negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
            num_images_per_prompt
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)