Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,378 Bytes
78c280f 7c0f531 da64627 241db12 da64627 241db12 da64627 241db12 7c0f531 b05e42c 7c0f531 8fe1ead c63225e a316152 8fe1ead 3ab0efb 7c0f531 f17a2ad 29beca1 8fe1ead 785dc3c 7c0f531 f34ebd9 7c0f531 f34ebd9 7c0f531 dfca54f 7c0f531 78c280f 7c0f531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import spaces
import json
import subprocess
import os
import sys
def run_command(command):
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
output, error = process.communicate()
if process.returncode != 0:
print(f"Error executing command: {command}")
print(error.decode('utf-8'))
exit(1)
return output.decode('utf-8')
# Download CUDA installer
download_command = "wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
result = run_command(download_command)
if result is None:
print("Failed to download CUDA installer.")
exit(1)
# Run CUDA installer in silent mode
install_command = "sh cuda_12.2.0_535.54.03_linux.run --silent --toolkit --samples --override"
result = run_command(install_command)
if result is None:
print("Failed to run CUDA installer.")
exit(1)
print("CUDA installation process completed.")
def install_packages():
# Clone the repository with submodules
run_command("git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git")
# Change to the cloned directory
os.chdir("llama-cpp-python")
# Checkout the specific commit in the llama.cpp submodule
os.chdir("vendor/llama.cpp")
run_command("git checkout 50e0535")
os.chdir("../..")
# Upgrade pip
run_command("pip install --upgrade pip")
# Install all optional dependencies with CUDA support
run_command('CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DCUDA_PATH=/usr/local/cuda-12.2 -DCUDAToolkit_ROOT=/usr/local/cuda-12.2 -DCUDAToolkit_INCLUDE_DIR=/usr/local/cuda-12/include -DCUDAToolkit_LIBRARY_DIR=/usr/local/cuda-12.2/lib64" FORCE_CMAKE=1 pip install -e .')
run_command("make clean && GGML_OPENBLAS=1 make -j")
# Reinstall the package with CUDA support
run_command('CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DCUDA_PATH=/usr/local/cuda-12.2 -DCUDAToolkit_ROOT=/usr/local/cuda-12.2 -DCUDAToolkit_INCLUDE_DIR=/usr/local/cuda-12/include -DCUDAToolkit_LIBRARY_DIR=/usr/local/cuda-12.2/lib64" FORCE_CMAKE=1 pip install -e .')
# Install llama-cpp-agent
run_command("pip install llama-cpp-agent")
run_command("export PYTHONPATH=$PYTHONPATH:$(pwd)")
print("Installation complete!")
try:
install_packages()
# Add a delay to allow for package registration
import time
time.sleep(5)
# Force Python to reload the site packages
import site
import importlib
importlib.reload(site)
# Now try to import the libraries
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
print("Libraries imported successfully!")
except Exception as e:
print(f"Installation failed or libraries couldn't be imported: {str(e)}")
sys.exit(1)
import gradio as gr
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="MaziyarPanahi/Mistral-Nemo-Instruct-2407-GGUF",
filename="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
local_dir="./models"
)
# Initialize LLM outside the respond function
llm = Llama(
model_path="models/Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=32768,
)
provider = LlamaCppPythonProvider(llm)
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.MISTRAL
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
description = """<p><center>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" target="_blank">[Instruct Model]</a>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Base-2407" target="_blank">[Base Model]</a>
<a href="https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF" target="_blank">[GGUF Version]</a>
</center></p>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with Mistral-NeMo using llama.cpp",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch(debug=True) |