File size: 16,498 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import io
from inspect import cleandoc
import numpy as np
import torch
from PIL import Image

from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict


from comfy_api_nodes.apis import (
    OpenAIImageGenerationRequest,
    OpenAIImageEditRequest,
    OpenAIImageGenerationResponse,
)

from comfy_api_nodes.apis.client import (
    ApiEndpoint,
    HttpMethod,
    SynchronousOperation,
)

from comfy_api_nodes.apinode_utils import (
    downscale_image_tensor,
    validate_and_cast_response,
    validate_string,
)

class OpenAIDalle2(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's DALL路E 2 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for DALL路E",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["256x256", "512x512", "1024x1024"],
                        "default": "1024x1024",
                        "tooltip": "Image size",
                    },
                ),
                "n": (
                    IO.INT,
                    {
                        "default": 1,
                        "min": 1,
                        "max": 8,
                        "step": 1,
                        "display": "number",
                        "tooltip": "How many images to generate",
                    },
                ),
                "image": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional reference image for image editing.",
                    },
                ),
                "mask": (
                    IO.MASK,
                    {
                        "default": None,
                        "tooltip": "Optional mask for inpainting (white areas will be replaced)",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        seed=0,

        image=None,

        mask=None,

        n=1,

        size="1024x1024",

        unique_id=None,

        **kwargs

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "dall-e-2"
        path = "/proxy/openai/images/generations"
        content_type = "application/json"
        request_class = OpenAIImageGenerationRequest
        img_binary = None

        if image is not None and mask is not None:
            path = "/proxy/openai/images/edits"
            content_type = "multipart/form-data"
            request_class = OpenAIImageEditRequest

            input_tensor = image.squeeze().cpu()
            height, width, channels = input_tensor.shape
            rgba_tensor = torch.ones(height, width, 4, device="cpu")
            rgba_tensor[:, :, :channels] = input_tensor

            if mask.shape[1:] != image.shape[1:-1]:
                raise Exception("Mask and Image must be the same size")
            rgba_tensor[:, :, 3] = 1 - mask.squeeze().cpu()

            rgba_tensor = downscale_image_tensor(rgba_tensor.unsqueeze(0)).squeeze()

            image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
            img = Image.fromarray(image_np)
            img_byte_arr = io.BytesIO()
            img.save(img_byte_arr, format="PNG")
            img_byte_arr.seek(0)
            img_binary = img_byte_arr  # .getvalue()
            img_binary.name = "image.png"
        elif image is not None or mask is not None:
            raise Exception("Dall-E 2 image editing requires an image AND a mask")

        # Build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=path,
                method=HttpMethod.POST,
                request_model=request_class,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=request_class(
                model=model,
                prompt=prompt,
                n=n,
                size=size,
                seed=seed,
            ),
            files=(
                {
                    "image": img_binary,
                }
                if img_binary
                else None
            ),
            content_type=content_type,
            auth_kwargs=kwargs,
        )

        response = operation.execute()

        img_tensor = validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


class OpenAIDalle3(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's DALL路E 3 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for DALL路E",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "quality": (
                    IO.COMBO,
                    {
                        "options": ["standard", "hd"],
                        "default": "standard",
                        "tooltip": "Image quality",
                    },
                ),
                "style": (
                    IO.COMBO,
                    {
                        "options": ["natural", "vivid"],
                        "default": "natural",
                        "tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["1024x1024", "1024x1792", "1792x1024"],
                        "default": "1024x1024",
                        "tooltip": "Image size",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        seed=0,

        style="natural",

        quality="standard",

        size="1024x1024",

        unique_id=None,

        **kwargs

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "dall-e-3"

        # build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path="/proxy/openai/images/generations",
                method=HttpMethod.POST,
                request_model=OpenAIImageGenerationRequest,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=OpenAIImageGenerationRequest(
                model=model,
                prompt=prompt,
                quality=quality,
                size=size,
                style=style,
                seed=seed,
            ),
            auth_kwargs=kwargs,
        )

        response = operation.execute()

        img_tensor = validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


class OpenAIGPTImage1(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's GPT Image 1 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for GPT Image 1",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "quality": (
                    IO.COMBO,
                    {
                        "options": ["low", "medium", "high"],
                        "default": "low",
                        "tooltip": "Image quality, affects cost and generation time.",
                    },
                ),
                "background": (
                    IO.COMBO,
                    {
                        "options": ["opaque", "transparent"],
                        "default": "opaque",
                        "tooltip": "Return image with or without background",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
                        "default": "auto",
                        "tooltip": "Image size",
                    },
                ),
                "n": (
                    IO.INT,
                    {
                        "default": 1,
                        "min": 1,
                        "max": 8,
                        "step": 1,
                        "display": "number",
                        "tooltip": "How many images to generate",
                    },
                ),
                "image": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional reference image for image editing.",
                    },
                ),
                "mask": (
                    IO.MASK,
                    {
                        "default": None,
                        "tooltip": "Optional mask for inpainting (white areas will be replaced)",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        seed=0,

        quality="low",

        background="opaque",

        image=None,

        mask=None,

        n=1,

        size="1024x1024",

        unique_id=None,

        **kwargs

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "gpt-image-1"
        path = "/proxy/openai/images/generations"
        content_type="application/json"
        request_class = OpenAIImageGenerationRequest
        img_binaries = []
        mask_binary = None
        files = []

        if image is not None:
            path = "/proxy/openai/images/edits"
            request_class = OpenAIImageEditRequest
            content_type ="multipart/form-data"

            batch_size = image.shape[0]

            for i in range(batch_size):
                single_image = image[i : i + 1]
                scaled_image = downscale_image_tensor(single_image).squeeze()

                image_np = (scaled_image.numpy() * 255).astype(np.uint8)
                img = Image.fromarray(image_np)
                img_byte_arr = io.BytesIO()
                img.save(img_byte_arr, format="PNG")
                img_byte_arr.seek(0)
                img_binary = img_byte_arr
                img_binary.name = f"image_{i}.png"

                img_binaries.append(img_binary)
                if batch_size == 1:
                    files.append(("image", img_binary))
                else:
                    files.append(("image[]", img_binary))

        if mask is not None:
            if image is None:
                raise Exception("Cannot use a mask without an input image")
            if image.shape[0] != 1:
                raise Exception("Cannot use a mask with multiple image")
            if mask.shape[1:] != image.shape[1:-1]:
                raise Exception("Mask and Image must be the same size")
            batch, height, width = mask.shape
            rgba_mask = torch.zeros(height, width, 4, device="cpu")
            rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu()

            scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0)).squeeze()

            mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
            mask_img = Image.fromarray(mask_np)
            mask_img_byte_arr = io.BytesIO()
            mask_img.save(mask_img_byte_arr, format="PNG")
            mask_img_byte_arr.seek(0)
            mask_binary = mask_img_byte_arr
            mask_binary.name = "mask.png"
            files.append(("mask", mask_binary))

        # Build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=path,
                method=HttpMethod.POST,
                request_model=request_class,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=request_class(
                model=model,
                prompt=prompt,
                quality=quality,
                background=background,
                n=n,
                seed=seed,
                size=size,
            ),
            files=files if files else None,
            content_type=content_type,
            auth_kwargs=kwargs,
        )

        response = operation.execute()

        img_tensor = validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "OpenAIDalle2": OpenAIDalle2,
    "OpenAIDalle3": OpenAIDalle3,
    "OpenAIGPTImage1": OpenAIGPTImage1,
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "OpenAIDalle2": "OpenAI DALL路E 2",
    "OpenAIDalle3": "OpenAI DALL路E 3",
    "OpenAIGPTImage1": "OpenAI GPT Image 1",
}