File size: 10,877 Bytes
c2ca15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple
import numba
import numpy as np
import torch
from mmcv.ops import nms, nms_rotated
from torch import Tensor
def box3d_multiclass_nms(
mlvl_bboxes: Tensor,
mlvl_bboxes_for_nms: Tensor,
mlvl_scores: Tensor,
score_thr: float,
max_num: int,
cfg: dict,
mlvl_dir_scores: Optional[Tensor] = None,
mlvl_attr_scores: Optional[Tensor] = None,
mlvl_bboxes2d: Optional[Tensor] = None) -> Tuple[Tensor]:
"""Multi-class NMS for 3D boxes. The IoU used for NMS is defined as the 2D
IoU between BEV boxes.
Args:
mlvl_bboxes (Tensor): Multi-level boxes with shape (N, M).
M is the dimensions of boxes.
mlvl_bboxes_for_nms (Tensor): Multi-level boxes with shape (N, 5)
([x1, y1, x2, y2, ry]). N is the number of boxes.
The coordinate system of the BEV boxes is counterclockwise.
mlvl_scores (Tensor): Multi-level boxes with shape (N, C + 1).
N is the number of boxes. C is the number of classes.
score_thr (float): Score threshold to filter boxes with low confidence.
max_num (int): Maximum number of boxes will be kept.
cfg (dict): Configuration dict of NMS.
mlvl_dir_scores (Tensor, optional): Multi-level scores of direction
classifier. Defaults to None.
mlvl_attr_scores (Tensor, optional): Multi-level scores of attribute
classifier. Defaults to None.
mlvl_bboxes2d (Tensor, optional): Multi-level 2D bounding boxes.
Defaults to None.
Returns:
Tuple[Tensor]: Return results after nms, including 3D bounding boxes,
scores, labels, direction scores, attribute scores (optional) and
2D bounding boxes (optional).
"""
# do multi class nms
# the fg class id range: [0, num_classes-1]
num_classes = mlvl_scores.shape[1] - 1
bboxes = []
scores = []
labels = []
dir_scores = []
attr_scores = []
bboxes2d = []
for i in range(0, num_classes):
# get bboxes and scores of this class
cls_inds = mlvl_scores[:, i] > score_thr
if not cls_inds.any():
continue
_scores = mlvl_scores[cls_inds, i]
_bboxes_for_nms = mlvl_bboxes_for_nms[cls_inds, :]
if cfg.use_rotate_nms:
nms_func = nms_bev
else:
nms_func = nms_normal_bev
selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr)
_mlvl_bboxes = mlvl_bboxes[cls_inds, :]
bboxes.append(_mlvl_bboxes[selected])
scores.append(_scores[selected])
cls_label = mlvl_bboxes.new_full((len(selected), ),
i,
dtype=torch.long)
labels.append(cls_label)
if mlvl_dir_scores is not None:
_mlvl_dir_scores = mlvl_dir_scores[cls_inds]
dir_scores.append(_mlvl_dir_scores[selected])
if mlvl_attr_scores is not None:
_mlvl_attr_scores = mlvl_attr_scores[cls_inds]
attr_scores.append(_mlvl_attr_scores[selected])
if mlvl_bboxes2d is not None:
_mlvl_bboxes2d = mlvl_bboxes2d[cls_inds]
bboxes2d.append(_mlvl_bboxes2d[selected])
if bboxes:
bboxes = torch.cat(bboxes, dim=0)
scores = torch.cat(scores, dim=0)
labels = torch.cat(labels, dim=0)
if mlvl_dir_scores is not None:
dir_scores = torch.cat(dir_scores, dim=0)
if mlvl_attr_scores is not None:
attr_scores = torch.cat(attr_scores, dim=0)
if mlvl_bboxes2d is not None:
bboxes2d = torch.cat(bboxes2d, dim=0)
if bboxes.shape[0] > max_num:
_, inds = scores.sort(descending=True)
inds = inds[:max_num]
bboxes = bboxes[inds, :]
labels = labels[inds]
scores = scores[inds]
if mlvl_dir_scores is not None:
dir_scores = dir_scores[inds]
if mlvl_attr_scores is not None:
attr_scores = attr_scores[inds]
if mlvl_bboxes2d is not None:
bboxes2d = bboxes2d[inds]
else:
bboxes = mlvl_scores.new_zeros((0, mlvl_bboxes.size(-1)))
scores = mlvl_scores.new_zeros((0, ))
labels = mlvl_scores.new_zeros((0, ), dtype=torch.long)
if mlvl_dir_scores is not None:
dir_scores = mlvl_scores.new_zeros((0, ))
if mlvl_attr_scores is not None:
attr_scores = mlvl_scores.new_zeros((0, ))
if mlvl_bboxes2d is not None:
bboxes2d = mlvl_scores.new_zeros((0, 4))
results = (bboxes, scores, labels)
if mlvl_dir_scores is not None:
results = results + (dir_scores, )
if mlvl_attr_scores is not None:
results = results + (attr_scores, )
if mlvl_bboxes2d is not None:
results = results + (bboxes2d, )
return results
def aligned_3d_nms(boxes: Tensor, scores: Tensor, classes: Tensor,
thresh: float) -> Tensor:
"""3D NMS for aligned boxes.
Args:
boxes (Tensor): Aligned box with shape [N, 6].
scores (Tensor): Scores of each box.
classes (Tensor): Class of each box.
thresh (float): IoU threshold for nms.
Returns:
Tensor: Indices of selected boxes.
"""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
z1 = boxes[:, 2]
x2 = boxes[:, 3]
y2 = boxes[:, 4]
z2 = boxes[:, 5]
area = (x2 - x1) * (y2 - y1) * (z2 - z1)
zero = boxes.new_zeros(1, )
score_sorted = torch.argsort(scores)
pick = []
while (score_sorted.shape[0] != 0):
last = score_sorted.shape[0]
i = score_sorted[-1]
pick.append(i)
xx1 = torch.max(x1[i], x1[score_sorted[:last - 1]])
yy1 = torch.max(y1[i], y1[score_sorted[:last - 1]])
zz1 = torch.max(z1[i], z1[score_sorted[:last - 1]])
xx2 = torch.min(x2[i], x2[score_sorted[:last - 1]])
yy2 = torch.min(y2[i], y2[score_sorted[:last - 1]])
zz2 = torch.min(z2[i], z2[score_sorted[:last - 1]])
classes1 = classes[i]
classes2 = classes[score_sorted[:last - 1]]
inter_l = torch.max(zero, xx2 - xx1)
inter_w = torch.max(zero, yy2 - yy1)
inter_h = torch.max(zero, zz2 - zz1)
inter = inter_l * inter_w * inter_h
iou = inter / (area[i] + area[score_sorted[:last - 1]] - inter)
iou = iou * (classes1 == classes2).float()
score_sorted = score_sorted[torch.nonzero(
iou <= thresh, as_tuple=False).flatten()]
indices = boxes.new_tensor(pick, dtype=torch.long)
return indices
@numba.jit(nopython=True)
def circle_nms(dets: Tensor, thresh: float, post_max_size: int = 83) -> Tensor:
"""Circular NMS.
An object is only counted as positive if no other center with a higher
confidence exists within a radius r using a bird-eye view distance metric.
Args:
dets (Tensor): Detection results with the shape of [N, 3].
thresh (float): Value of threshold.
post_max_size (int): Max number of prediction to be kept.
Defaults to 83.
Returns:
Tensor: Indexes of the detections to be kept.
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
scores = dets[:, 2]
order = scores.argsort()[::-1].astype(np.int32) # highest->lowest
ndets = dets.shape[0]
suppressed = np.zeros((ndets), dtype=np.int32)
keep = []
for _i in range(ndets):
i = order[_i] # start with highest score box
if suppressed[
i] == 1: # if any box have enough iou with this, remove it
continue
keep.append(i)
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
# calculate center distance between i and j box
dist = (x1[i] - x1[j])**2 + (y1[i] - y1[j])**2
# ovr = inter / areas[j]
if dist <= thresh:
suppressed[j] = 1
if post_max_size < len(keep):
return keep[:post_max_size]
return keep
# This function duplicates functionality of mmcv.ops.iou_3d.nms_bev
# from mmcv<=1.5, but using cuda ops from mmcv.ops.nms.nms_rotated.
# Nms api will be unified in mmdetection3d one day.
def nms_bev(boxes: Tensor,
scores: Tensor,
thresh: float,
pre_max_size: Optional[int] = None,
post_max_size: Optional[int] = None) -> Tensor:
"""NMS function GPU implementation (for BEV boxes). The overlap of two
boxes for IoU calculation is defined as the exact overlapping area of the
two boxes. In this function, one can also set ``pre_max_size`` and
``post_max_size``.
Args:
boxes (Tensor): Input boxes with the shape of [N, 5]
([x1, y1, x2, y2, ry]).
scores (Tensor): Scores of boxes with the shape of [N].
thresh (float): Overlap threshold of NMS.
pre_max_size (int, optional): Max size of boxes before NMS.
Defaults to None.
post_max_size (int, optional): Max size of boxes after NMS.
Defaults to None.
Returns:
Tensor: Indexes after NMS.
"""
assert boxes.size(1) == 5, 'Input boxes shape should be [N, 5]'
order = scores.sort(0, descending=True)[1]
if pre_max_size is not None:
order = order[:pre_max_size]
boxes = boxes[order].contiguous()
scores = scores[order]
# xyxyr -> back to xywhr
# note: better skip this step before nms_bev call in the future
boxes = torch.stack(
((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2,
boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1], boxes[:, 4]),
dim=-1)
keep = nms_rotated(boxes, scores, thresh)[1]
keep = order[keep]
if post_max_size is not None:
keep = keep[:post_max_size]
return keep
# This function duplicates functionality of mmcv.ops.iou_3d.nms_normal_bev
# from mmcv<=1.5, but using cuda ops from mmcv.ops.nms.nms.
# Nms api will be unified in mmdetection3d one day.
def nms_normal_bev(boxes: Tensor, scores: Tensor, thresh: float) -> Tensor:
"""Normal NMS function GPU implementation (for BEV boxes). The overlap of
two boxes for IoU calculation is defined as the exact overlapping area of
the two boxes WITH their yaw angle set to 0.
Args:
boxes (Tensor): Input boxes with shape (N, 5).
scores (Tensor): Scores of predicted boxes with shape (N).
thresh (float): Overlap threshold of NMS.
Returns:
Tensor: Remaining indices with scores in descending order.
"""
assert boxes.shape[1] == 5, 'Input boxes shape should be [N, 5]'
return nms(boxes[:, :-1], scores, thresh)[1]
|