File size: 2,253 Bytes
c2ca15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
_base_ = ['./cenet-64x512_4xb4_semantickitti.py']
backend_args = None
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.int32',
seg_offset=2**16,
dataset_type='semantickitti',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(type='PointSample', num_points=0.9),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-3.1415929, 3.1415929],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.1, 0.1, 0.1],
),
dict(
type='SemkittiRangeView',
H=64,
W=1024,
fov_up=3.0,
fov_down=-25.0,
means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
ignore_index=19),
dict(type='Pack3DDetInputs', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_seg_3d=True,
seg_3d_dtype='np.int32',
seg_offset=2**16,
dataset_type='semantickitti',
backend_args=backend_args),
dict(type='PointSegClassMapping'),
dict(
type='SemkittiRangeView',
H=64,
W=1024,
fov_up=3.0,
fov_down=-25.0,
means=(11.71279, -0.1023471, 0.4952, -1.0545, 0.2877),
stds=(10.24, 12.295865, 9.4287, 0.8643, 0.1450),
ignore_index=19),
dict(
type='Pack3DDetInputs',
keys=['img'],
meta_keys=('proj_x', 'proj_y', 'proj_range', 'unproj_range'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
|