File size: 3,107 Bytes
e90622e
 
ec0bc03
 
 
 
 
 
 
e90622e
3f3b45a
fa325fd
3f3b45a
fa325fd
3f3b45a
 
e90622e
 
 
fa325fd
 
e90622e
 
 
 
 
 
 
 
 
fa325fd
e90622e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0bc03
 
 
e90622e
ec0bc03
 
3f3b45a
 
 
 
 
 
 
 
 
 
 
 
 
ec0bc03
 
e90622e
ec0bc03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import gradio as gr
import torch

# Cargar el modelo y el tokenizador
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")

# Cargar tu conjunto de datos
try:
    dataset = load_dataset('csv', data_files='alpaca.csv', delimiter='\t')  # Especificar el delimitador como tabulaciΓ³n
    print("Conjunto de datos cargado correctamente.")
    print("Columnas disponibles:", dataset['train'].column_names)  # Imprimir nombres de columnas
except Exception as e:
    print(f"Error al cargar el conjunto de datos: {e}")

# Preprocesar los datos
def preprocess_function(examples):
    inputs = [ex['instruction'] for ex in examples]  # Usar solo la columna de instruction
    outputs = [ex['output'] for ex in examples]  # Usar solo la columna de output
    model_inputs = tokenizer(inputs, max_length=512, truncation=True)

    # Configurar las etiquetas
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(outputs, max_length=512, truncation=True)

    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

# Mapear el conjunto de datos
tokenized_dataset = dataset.map(preprocess_function, batched=True)

# Configurar los argumentos de entrenamiento
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=2,
    num_train_epochs=3,
)

# Crear el Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset['train'],
)

# Entrenar el modelo
trainer.train()

# Guardar el modelo entrenado
model.save_pretrained("./mi_modelo_entrenado")
tokenizer.save_pretrained("./mi_modelo_entrenado")

# Cargar el modelo entrenado
model = AutoModelForCausalLM.from_pretrained("./mi_modelo_entrenado")
tokenizer = AutoTokenizer.from_pretrained("./mi_modelo_entrenado")

# Inicializar el historial de conversaciΓ³n
chat_history_ids = None

# FunciΓ³n de chat
def chat_with_bot(user_input):
    global chat_history_ids
    try:
        new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
        bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
        chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
        response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
        
        # Si la respuesta es vacΓ­a o no tiene sentido, devuelve una respuesta predeterminada
        if not response.strip():
            return "Lo siento, no entiendo la pregunta."
        
        return response
    except Exception as e:
        return f"Error: {e}. No pude procesar tu pregunta."

# Crear la interfaz de Gradio
iface = gr.Interface(fn=chat_with_bot, inputs="text", outputs="text", title="Chatbot Entrenado")
iface.launch()