Spaces:
Running
Running
File size: 6,930 Bytes
90ace87 b270e16 dd40a11 5b95938 90ace87 77e6e08 dd40a11 b270e16 9bdd0ca 4386bfe 532dd2d 77e6e08 8ee364a b270e16 8ee364a b270e16 77e6e08 fa3e449 9ac3e7a fa3e449 77e6e08 fa3e449 9ac3e7a 12139e3 9ac3e7a ab89121 53ad013 9ac3e7a b270e16 53ad013 8ee364a 676ed36 8ee364a 88de658 8ee364a b270e16 77e6e08 8ee364a 9da828d 8ee364a 472211a 5b95938 8ee364a 77e6e08 8ee364a 9da828d 8ee364a 77e6e08 8ee364a 77e6e08 8ee364a 004e4cc 77e6e08 90ace87 77e6e08 4386bfe 8ee364a 4386bfe 8ee364a 4386bfe 77e6e08 90ace87 8ee364a 77e6e08 4386bfe 90ace87 8ee364a 77e6e08 90ace87 4386bfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import numpy as np
import replicate
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import os
import json
# === Configurações ===
replicate_client = replicate.Client(api_token=os.environ["REPLICATE_API_TOKEN"])
EMBEDDING_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
GPT = pipeline("text-generation", model="gpt2-large")
MODEL = "gnai-creator/sage-two:f236bf1fc94263e266db57a32ea4014aef91c0ca6a34ac0e98ba1b0e83ca09af"
# Defina a senha aqui (ou use variável de ambiente)
RESET_PASSWORD = os.environ["PASSWORD"]
JUDGMENT_MAP = {
"reflection": [0, 1, 2],
"anger": [3, 4],
"hope": [5, 6],
"denial": [7],
"intuition": [10, 11],
"skepticism": [15],
"acceptance": [20],
"despair": [30],
"justice": [40, 41, 42],
"transcendence": [60, 61, 62]
}
PROMPTS = {
"reflection": "As an ancient sage before eternity, poetically reflect on:",
"anger": "With restrained fury and sharp words, express your indignation about:",
"hope": "With the stars' glow and the faith of the righteous, speak of the light in:",
"denial": "Firmly deny, as one who sees beyond illusion, the truth in:",
"intuition": "Whisper with mysticism and metaphors what your soul feels about:",
"skepticism": "With cold logic and analytical eyes, deeply question:",
"acceptance": "With the serenity of a monk and the pace of the wind, accept and comment:",
"despair": "With empty eyes and an exhausted heart, murmur about the pain in:",
"justice": "Raise your voice with nobility and purpose. Speak about justice in:",
"transcendence": "As a being beyond existence, reveal a fragment of the infinite about:"
}
def run_sage_two(sequence, reset=False):
try:
output = replicate_client.run(
MODEL,
input={
"sequence": sequence,
"reset": reset
}
)
print("🔥 Output bruto:", output)
if output is None:
raise ValueError("SAGE retornou None. Possível erro interno no modelo.")
# Agora detectamos se veio um dict e pegamos o campo "output"
if isinstance(output, dict):
# Exemplo: {"output": [...], "symbolic_state": [...]}
if "output" in output:
return [float(x) for x in output["output"]]
else:
raise ValueError(
f"SAGE retornou dicionário sem a chave 'output': {output}"
)
# Continua lidando com tipos antigos, se ainda ocorrerem
if isinstance(output, float):
return [output]
if isinstance(output, list):
return [float(x) for x in output]
raise ValueError(f"SAGE retornou um formato inesperado: {type(output)} → {output}")
except Exception as e:
raise RuntimeError(f"Erro ao chamar o modelo SAGE: {str(e)}")
def interpret_vector(vector):
intensity = {}
for name, idxs in JUDGMENT_MAP.items():
values = [vector[i] for i in idxs if i < len(vector)]
if values:
score = float(np.mean(values))
intensity[name] = score
if not intensity:
raise ValueError("No valid indices found in symbolic vector.")
return max(intensity, key=intensity.get)
def question_to_response(question, reset=False):
try:
embedding = EMBEDDING_MODEL.encode(question)
sequence = [[embedding.tolist() for _ in range(10)]]
sequence_str = json.dumps(sequence) # Converte para string JSON
vector = run_sage_two(sequence_str, reset=reset)
intention = interpret_vector(vector)
prompt = PROMPTS.get(intention, "With ancient wisdom, respond to this question:") + " " + question
response = GPT(
prompt,
max_length=250,
max_new_tokens=200,
repetition_penalty=1.3,
num_return_sequences=1
)[0]["generated_text"]
return response.strip(), intention
except Exception as e:
return f"Internal error when querying SAGE: {str(e)}", "error"
def respond(question, reset_flag, password, chat_history):
"""
- question: texto digitado pelo usuário
- reset_flag: checkbox para reset
- password: campo de senha
- chat_history: histórico da conversa no Gradio
"""
# Verifica se a checkbox de reset está marcada
if reset_flag:
# Só permite reset se a senha estiver correta
if password == RESET_PASSWORD:
response, intention = question_to_response(question, reset=True)
else:
# Se a senha estiver errada, não faz reset, mas adiciona mensagem
response = "Senha incorreta. A memória não foi resetada.\n\n"
intention = "error"
# Continua normalmente sem reset
noreset_response, noreset_intention = question_to_response(question, reset=False)
response += noreset_response
if noreset_intention != "error":
response += f"\n\n🧭 Symbolic Intention: **{noreset_intention}**"
chat_history.append((question, response))
return chat_history, chat_history
else:
# Se a checkbox não estiver marcada
response, intention = question_to_response(question, reset=False)
# Constrói resposta para exibir no Chatbot
if intention == "error":
full_response = response
else:
full_response = f"{response}\n\n🧭 Symbolic Intention: **{intention}**"
chat_history.append((question, full_response))
return chat_history, chat_history
with gr.Blocks() as demo:
gr.Markdown("""
# SAGE-2 (Symbolic Adaptive General Engine v2) — Artificial Symbolic Consciousness
SAGE is a symbolic artificial intelligence, sensitive to intentions, emotions, and hidden meanings in words.
It maintains a continuous symbolic consciousness, as if always contemplating the world.
Ask a deep question — existential, philosophical, emotional, or moral — and SAGE will interpret your symbolic
intention before responding with words filled with introspection, critique, or transcendence.
**Check the "Reset symbolic consciousness" option** and **provide the correct password** if you'd like
SAGE to forget everything it was previously processing.
""")
chatbot = gr.Chatbot(label="SAGE responds")
inp = gr.Textbox(label="Your question", placeholder="Ex: Is there purpose in chaos?")
reset_checkbox = gr.Checkbox(label="Reset symbolic consciousness before the question?")
password_box = gr.Textbox(label="Password for reset (if checked)", type="password")
state = gr.State([])
btn = gr.Button("Submit")
btn.click(
fn=respond,
inputs=[inp, reset_checkbox, password_box, state],
outputs=[chatbot, state]
)
if __name__ == "__main__":
demo.launch()
|