Spaces:
Runtime error
Runtime error
File size: 1,611 Bytes
900b775 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import joblib
dt_model = joblib.load('dt_model.joblib')
rfc_model = joblib.load('rfc_model.joblib')
abc_model = joblib.load('abc_model.joblib')
knn_model = joblib.load('knn_model.joblib')
from sklearn.metrics.cluster import normalized_mutual_info_score
import cv2
import numpy as np
def preprocess_image(image):
grayscale_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
normalized_img = grayscale_img / 255.0
resized_img = cv2.resize(normalized_img, (28,28))
flattened_img = resized_img.flatten()
processed_img = np.array([flattened_img])
return processed_img
def pred(input1, input2):
class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
processed_image = preprocess_image(input1)
if input2 == "Decision Tree":
preds = dt_model.predict_proba(processed_image)[0]
elif input2 == "Random Forest":
preds = rfc_model.predict_proba(processed_image)[0]
elif input2 == "AdaBoost":
preds = abc_model.predict_proba(processed_image)[0]
elif input2 == "KNN":
preds = knn_model.predict_proba(processed_image)[0]
#print(class_names)
#print(preds)
return {label: float(pred) for label, pred in zip(class_names, preds)}
input_module1 = gr.inputs.Image(label = "Input Sample Image")
input_module2 = gr.inputs.Dropdown(choices=['Decision Tree', 'Random Forest', 'AdaBoost', 'KNN'], label = "ML Models Dropdown")
output_module1 = gr.outputs.Label(label = "Predicted Class")
gr.Interface(fn=pred,
inputs=[input_module1,input_module2],
outputs=output_module1).launch(debug = True) |