File size: 6,850 Bytes
3df1448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ebdc7
 
3df1448
 
f8ebdc7
3df1448
 
f8ebdc7
3df1448
f8ebdc7
 
 
 
 
3df1448
f8ebdc7
 
 
 
 
 
3df1448
 
 
 
 
 
 
 
f8ebdc7
 
 
3df1448
 
f8ebdc7
3df1448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ebdc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df1448
f8ebdc7
3df1448
 
 
f8ebdc7
3df1448
 
 
 
 
 
 
 
 
 
 
 
f8ebdc7
 
3df1448
 
 
 
 
 
 
 
 
 
 
 
 
f8ebdc7
 
3df1448
 
 
 
 
f8ebdc7
3df1448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ebdc7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr

from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline
from diffusers.utils import torch_device

# Load the model
pipe = DiffusionPipeline.from_pretrained(
    "Fantasy-Studio/Paint-by-Example",
    torch_dtype=torch.float32,  # Change to float32 for CPU
)

# Define function to predict
def predict(dict, reference, scale, seed, step):
    width, height = dict["image"].size
    if width < height:
        factor = width / 512.0
        width = 512
        height = int((height / factor) / 8.0) * 8
    else:
        factor = height / 512.0
        height = 512
        width = int((width / factor) / 8.0) * 8
    init_image = dict["image"].convert("RGB").resize((width, height))
    mask = dict["mask"].convert("RGB").resize((width, height))
    generator = torch.Generator().manual_seed(seed) if seed != 0 else None
    output = pipe(
        image=init_image,
        mask_image=mask,
        example_image=reference,
        generator=generator,
        guidance_scale=scale,
        num_inference_steps=step,
    ).images[0]
    return output, gr.update(visible=True), gr.update(visible=True), gr.update(
        visible=True
    )


# Define CSS
css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

# Read content function
def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


# Define example data
example = {}
ref_dir = 'examples/reference'
image_dir = 'examples/image'
ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)]
ref_list.sort()
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
image_list.sort()


# Create Gradio Blocks instance
image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Source Image")
                    reference = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Reference Image")

                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
                    guidance = gr.Slider(label="Guidance scale", value=5, maximum=15, interactive=True)
                    steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1, interactive=True)

                    seed = gr.Slider(0, 10000, label='Seed (0 = random)', value=0, step=1)

                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        btn = gr.Button("Paint!").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=True,
                        )
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=True)
                        loading_icon = gr.HTML(loading_icon_html, visible=True)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)


            with gr.Row():
                with gr.Column():
                    gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12)
                with gr.Column():
                    gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12)

            btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
            share_button.click(None, [], [], _js=share_js)

            gr.HTML(
                """
                    <div class="footer">
                        <p>Model by <a href="" style="text-decoration: underline;" target="_blank">Fantasy-Studio</a> - Gradio Demo by 🤗 Hugging Face
                        </p>
                    </div>
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
        The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                """
            )

# Launch the Gradio interface
image_blocks.launch()