File size: 6,608 Bytes
1177622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776ae2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from langchain.document_transformers import LongContextReorder
from langchain_core.runnables import RunnableLambda
from langchain_core.runnables.passthrough import RunnableAssign
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

import gradio as gr
from functools import partial
from operator import itemgetter

from faiss import IndexFlatL2
from langchain_community.docstore.in_memory import InMemoryDocstore
import json
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings

from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import ArxivLoader

api_key = os.getenv("NVIDIA_API_KEY")

# NVIDIAEmbeddings.get_available_models()
embedder = NVIDIAEmbeddings(model="nvidia/embed-qa-4", api_key=api_key, truncate="END")
# ChatNVIDIA.get_available_models()
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")

embed_dims = len(embedder.embed_query("test"))
def default_FAISS():
    '''Useful utility for making an empty FAISS vectorstore'''
    return FAISS(
        embedding_function=embedder,
        index=IndexFlatL2(embed_dims),
        docstore=InMemoryDocstore(),
        index_to_docstore_id={},
        normalize_L2=False
    )

def aggregate_vstores(vectorstores):
    ## Initialize an empty FAISS Index and merge others into it
    ## We'll use default_faiss for simplicity, though it's tied to your embedder by reference
    agg_vstore = default_FAISS()
    for vstore in vectorstores:
        agg_vstore.merge_from(vstore)
    return agg_vstore

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000, chunk_overlap=100,
    separators=["\n\n", "\n", ".", ";", ",", " "],
)

docs = [
    ArxivLoader(query="1706.03762").load(),  ## Attention Is All You Need Paper
    ArxivLoader(query="1810.04805").load(),  ## BERT Paper
    ArxivLoader(query="2005.11401").load(),  ## RAG Paper
    ArxivLoader(query="2205.00445").load(),  ## MRKL Paper
    ArxivLoader(query="2310.06825").load(),  ## Mistral Paper
    ArxivLoader(query="2306.05685").load(),  ## LLM-as-a-Judge
    ## Some longer papers
    ArxivLoader(query="2210.03629").load(),  ## ReAct Paper
    ArxivLoader(query="2112.10752").load(),  ## Latent Stable Diffusion Paper
    ArxivLoader(query="2103.00020").load(),  ## CLIP Paper
    ## TODO: Feel free to add more
]

## Cut the paper short if references is included.
## This is a standard string in papers.
for doc in docs:
    content = json.dumps(doc[0].page_content)
    if "References" in content:
        doc[0].page_content = content[:content.index("References")]

## Split the documents and also filter out stubs (overly short chunks)
print("Chunking Documents")
docs_chunks = [text_splitter.split_documents(doc) for doc in docs]
docs_chunks = [[c for c in dchunks if len(c.page_content) > 200] for dchunks in docs_chunks]

## Make some custom Chunks to give big-picture details
doc_string = "Available Documents:"
doc_metadata = []
for chunks in docs_chunks:
    metadata = getattr(chunks[0], 'metadata', {})
    doc_string += "\n - " + metadata.get('Title')
    doc_metadata += [str(metadata)]

extra_chunks = [doc_string] + doc_metadata

vecstores = [FAISS.from_texts(extra_chunks, embedder)]
vecstores += [FAISS.from_documents(doc_chunks, embedder) for doc_chunks in docs_chunks]

## Unintuitive optimization; merge_from seems to optimize constituent vector stores away
docstore = aggregate_vstores(vecstores)

print(f"Constructed aggregate docstore with {len(docstore.docstore._dict)} chunks")

convstore = default_FAISS()

def save_memory_and_get_output(d, vstore):
    """Accepts 'input'/'output' dictionary and saves to convstore"""
    vstore.add_texts([
        f"User previously responded with {d.get('input')}",
        f"Agent previously responded with {d.get('output')}"
    ])
    return d.get('output')

initial_msg = (
    "Hello! I am a document chat agent here to help the user!"
    f" I have access to the following documents: {doc_string}\n\nHow can I help you?"
)

chat_prompt = ChatPromptTemplate.from_messages([("system",
    "You are a document chatbot. Help the user as they ask questions about documents."
    " User messaged just asked: {input}\n\n"
    " From this, we have retrieved the following potentially-useful info: "
    " Conversation History Retrieval:\n{history}\n\n"
    " Document Retrieval:\n{context}\n\n"
    " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
), ('user', '{input}')])

stream_chain = chat_prompt| RPrint() | instruct_llm | StrOutputParser()

def RPrint(preface=""):
    """Simple passthrough "prints, then returns" chain"""
    def print_and_return(x, preface):
        if preface: print(preface, end="")
        return x
    return RunnableLambda(partial(print_and_return, preface=preface))

retrieval_chain = (
    {'input' : (lambda x: x)}
    ## TODO: Make sure to retrieve history & context from convstore & docstore, respectively.
    ## HINT: Our solution uses RunnableAssign, itemgetter, long_reorder, and docs2str
    | RunnableAssign({'history' : itemgetter('input') | convstore.as_retriever() | long_reorder | docs2str})
    | RunnableAssign({'context' : itemgetter('input') | docstore.as_retriever()  | long_reorder | docs2str})
    | RPrint()
)

def chat_gen(message, history=[], return_buffer=True):
    buffer = ""
    ## First perform the retrieval based on the input message
    retrieval = retrieval_chain.invoke(message)
    line_buffer = ""

    ## Then, stream the results of the stream_chain
    for token in stream_chain.stream(retrieval):
        buffer += token
        ## If you're using standard print, keep line from getting too long
        yield buffer if return_buffer else token

    ## Lastly, save the chat exchange to the conversation memory buffer
    save_memory_and_get_output({'input':  message, 'output': buffer}, convstore)


# ## Start of Agent Event Loop
# test_question = "Tell me about RAG!"  ## <- modify as desired

# ## Before you launch your gradio interface, make sure your thing works
# for response in chat_gen(test_question, return_buffer=False):
#     print(response, end='')

chatbot = gr.Chatbot(value = [[None, initial_msg]])
demo = gr.ChatInterface(chat_gen, chatbot=chatbot).queue()

try:
    demo.launch(debug=True, share=True, show_api=False)
    demo.close()
except Exception as e:
    demo.close()
    print(e)
    raise e