File size: 7,131 Bytes
57d6a6f c615e1f d7607a1 adca7d2 57d6a6f 6b96e22 afabde5 57d6a6f d7607a1 e0dc47b d7607a1 75e1fdf d7607a1 f0701fa d7607a1 399f723 d7607a1 adca7d2 d7607a1 399f723 d7607a1 399f723 d7607a1 399f723 d7607a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
from .bleu import *
from .weighted_ngram_match import *
from .syntax_match import *
from .dataflow_match import *
from tree_sitter import Language, Parser
import os
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CodeBLEU(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Sequence(datasets.Value("string")),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
if self.config_name == "python":
Language.build_library('./parser/my-languages.so',['tree-sitter-python'])
elif self.config_name == "go":
Language.build_library('./parser/my-languages.so',['tree-sitter-go'])
elif self.config_name == "javascript":
Language.build_library('./parser/my-languages.so',['tree-sitter-javascript'])
elif self.config_name == "php":
Language.build_library('./parser/my-languages.so',['tree-sitter-php'])
elif self.config_name == "java":
Language.build_library('./parser/my-languages.so',['tree-sitter-java'])
elif self.config_name == "ruby":
Language.build_library('./parser/my-languages.so',['tree-sitter-ruby'])
elif self.config_name == "c-sharp":
Language.build_library('./parser/my-languages.so',['tree-sitter-c-sharp'])
elif self.config_name == "cpp":
Language.build_library('./parser/my-languages.so',['tree-sitter-cpp'])
def _compute(self, predictions, references, language="python", alpha=0.25, beta=0.25, gamma=0.25, theta=0.25):
# preprocess inputs
pre_references = [[s.strip() for s in my_list] for my_list in references]
#pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] for file in references]
hypothesis = [s.strip() for s in predictions]
#hypothesis = [x.strip() for x in open(predictions, 'r', encoding='utf-8').readlines()]
for i in range(len(pre_references)):
assert len(hypothesis) == len(pre_references[i])
references = []
for i in range(len(hypothesis)):
ref_for_instance = []
for j in range(len(pre_references)):
ref_for_instance.append(pre_references[j][i])
references.append(ref_for_instance)
assert len(references) == len(pre_references)*len(hypothesis)
# calculate ngram match (BLEU)
tokenized_hyps = [x.split() for x in hypothesis]
tokenized_refs = [[x.split() for x in reference] for reference in references]
ngram_match_score = corpus_bleu(tokenized_refs,tokenized_hyps)
# calculate weighted ngram match
# from os import listdir
# from os.path import isfile, join
# onlyfiles = [f for f in listdir("./keywords") if isfile(join("keywords", f))]
# print(onlyfiles)
curr_path = os.path.dirname(os.path.abspath(__file__))
keywords = [x.strip() for x in open(curr_path + language +'.txt', 'r', encoding='utf-8').readlines()]
def make_weights(reference_tokens, key_word_list):
return {token:1 if token in key_word_list else 0.2 \
for token in reference_tokens}
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]\
for reference_tokens in reference] for reference in tokenized_refs]
weighted_ngram_match_score = corpus_weighted_ngram_match(tokenized_refs_with_weights,tokenized_hyps)
# calculate syntax match
syntax_match_score = corpus_syntax_match(references, hypothesis, language)
# calculate dataflow match
dataflow_match_score = corpus_dataflow_match(references, hypothesis, language)
code_bleu_score = alpha*ngram_match_score\
+ beta*weighted_ngram_match_score\
+ gamma*syntax_match_score\
+ theta*dataflow_match_score
return {
"ngram_match_score": ngram_match_score,
"weighted_ngram_match_score": weighted_ngram_match_score,
"syntax_match_score": syntax_match_score,
"dataflow_match_score": dataflow_match_score,
"code_bleu_score": code_bleu_score
} |