File size: 7,131 Bytes
57d6a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c615e1f
 
 
 
d7607a1
adca7d2
57d6a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b96e22
afabde5
57d6a6f
 
 
 
 
 
 
 
 
d7607a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0dc47b
d7607a1
75e1fdf
d7607a1
 
f0701fa
 
 
 
d7607a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f723
d7607a1
 
 
 
 
 
adca7d2
 
d7607a1
 
 
 
 
 
399f723
d7607a1
 
399f723
d7607a1
 
399f723
d7607a1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
from .bleu import *
from .weighted_ngram_match import *
from .syntax_match import *
from .dataflow_match import *
from tree_sitter import Language, Parser
import os


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CodeBLEU(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('string'),
                'references': datasets.Sequence(datasets.Value("string")),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
      """Optional: download external resources useful to compute the scores"""
      # TODO: Download external resources if needed
      if self.config_name == "python":
        Language.build_library('./parser/my-languages.so',['tree-sitter-python'])
      elif self.config_name == "go":
        Language.build_library('./parser/my-languages.so',['tree-sitter-go'])
      elif self.config_name == "javascript":
        Language.build_library('./parser/my-languages.so',['tree-sitter-javascript'])
      elif self.config_name == "php":
        Language.build_library('./parser/my-languages.so',['tree-sitter-php'])
      elif self.config_name == "java":
        Language.build_library('./parser/my-languages.so',['tree-sitter-java'])
      elif self.config_name == "ruby":
        Language.build_library('./parser/my-languages.so',['tree-sitter-ruby'])
      elif self.config_name == "c-sharp":
        Language.build_library('./parser/my-languages.so',['tree-sitter-c-sharp'])
      elif self.config_name == "cpp":
        Language.build_library('./parser/my-languages.so',['tree-sitter-cpp'])


    def _compute(self, predictions, references, language="python", alpha=0.25, beta=0.25, gamma=0.25, theta=0.25):

      # preprocess inputs
      pre_references = [[s.strip() for s in my_list] for my_list in references]
      #pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] for file in references]
      hypothesis = [s.strip() for s in predictions]
      #hypothesis = [x.strip() for x in open(predictions, 'r', encoding='utf-8').readlines()]

      for i in range(len(pre_references)):
          assert len(hypothesis) == len(pre_references[i])

      references = []
      for i in range(len(hypothesis)):
          ref_for_instance = []
          for j in range(len(pre_references)):
              ref_for_instance.append(pre_references[j][i])
          references.append(ref_for_instance)
      assert len(references) == len(pre_references)*len(hypothesis)


      # calculate ngram match (BLEU)
      tokenized_hyps = [x.split() for x in hypothesis]
      tokenized_refs = [[x.split() for x in reference] for reference in references]

      ngram_match_score = corpus_bleu(tokenized_refs,tokenized_hyps)

      # calculate weighted ngram match
      # from os import listdir
      # from os.path import isfile, join
      # onlyfiles = [f for f in listdir("./keywords") if isfile(join("keywords", f))]
      # print(onlyfiles)
      curr_path = os.path.dirname(os.path.abspath(__file__))
      keywords = [x.strip() for x in open(curr_path + language +'.txt', 'r', encoding='utf-8').readlines()]
      def make_weights(reference_tokens, key_word_list):
          return {token:1 if token in key_word_list else 0.2 \
                  for token in reference_tokens}
      tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]\
                  for reference_tokens in reference] for reference in tokenized_refs]

      weighted_ngram_match_score = corpus_weighted_ngram_match(tokenized_refs_with_weights,tokenized_hyps)

      # calculate syntax match
      syntax_match_score = corpus_syntax_match(references, hypothesis, language)

      # calculate dataflow match
      dataflow_match_score = corpus_dataflow_match(references, hypothesis, language)



      code_bleu_score = alpha*ngram_match_score\
                      + beta*weighted_ngram_match_score\
                      + gamma*syntax_match_score\
                      + theta*dataflow_match_score
      return {
        "ngram_match_score": ngram_match_score,
        "weighted_ngram_match_score": weighted_ngram_match_score,
        "syntax_match_score": syntax_match_score,
        "dataflow_match_score": dataflow_match_score,
        "code_bleu_score": code_bleu_score
      }