File size: 7,742 Bytes
3573a39
8f809e2
 
3573a39
8f809e2
3573a39
8f809e2
3573a39
8f809e2
 
3573a39
 
 
 
 
 
 
 
 
 
 
 
 
8f809e2
 
 
3573a39
 
 
8f809e2
 
3573a39
8f809e2
 
 
 
 
 
 
 
 
3573a39
8f809e2
 
 
 
 
 
 
 
 
3573a39
8f809e2
3573a39
 
 
8f809e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3573a39
8f809e2
 
 
 
3573a39
8f809e2
 
 
3573a39
 
 
 
 
 
 
 
 
 
 
8f809e2
 
3573a39
 
 
 
 
 
 
 
 
 
 
 
 
8f809e2
 
3573a39
 
 
 
8f809e2
 
 
 
 
 
3573a39
8f809e2
3573a39
 
 
 
 
 
8f809e2
 
 
 
 
3573a39
8f809e2
 
3573a39
 
 
 
8f809e2
 
 
 
 
 
 
3573a39
8f809e2
3573a39
8f809e2
 
 
 
 
 
 
 
3573a39
 
 
 
8f809e2
 
 
 
 
3573a39
8f809e2
 
3573a39
 
 
8f809e2
 
 
 
3573a39
8f809e2
 
3573a39
8f809e2
 
 
 
 
 
 
 
 
 
 
3573a39
8f809e2
 
 
 
 
 
 
 
1784f11
3573a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f809e2
 
 
 
 
3573a39
 
 
 
8f809e2
 
 
 
3573a39
 
8f809e2
 
 
3573a39
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import collections
import json
import logging
import os
import threading

import datasets
import gradio as gr
from transformers.pipelines import TextClassificationPipeline

from io_utils import (
    read_column_mapping,
    save_job_to_pipe,
    write_column_mapping,
    write_log_to_user_file,
)
from text_classification import (
    check_model,
    get_example_prediction,
    get_labels_and_features_from_dataset,
)
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW

MAX_LABELS = 20
MAX_FEATURES = 20

HF_REPO_ID = "HF_REPO_ID"
HF_SPACE_ID = "SPACE_ID"
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
CONFIG_PATH = "./config.yaml"


def check_dataset_and_get_config(dataset_id):
    try:
        write_column_mapping(None)
        configs = datasets.get_dataset_config_names(dataset_id)
        return gr.Dropdown(configs, value=configs[0], visible=True)
    except Exception:
        # Dataset may not exist
        pass


def check_dataset_and_get_split(dataset_id, dataset_config):
    try:
        splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
        return gr.Dropdown(splits, value=splits[0], visible=True)
    except Exception:
        # Dataset may not exist
        # gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
        pass


def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
    ds_labels, ds_features = get_labels_and_features_from_dataset(
        dataset_id, dataset_config, dataset_split
    )
    if labels is None:
        return
    labels = [*labels]
    all_mappings = read_column_mapping(CONFIG_PATH)

    if all_mappings is None:
        all_mappings = dict()

    if "labels" not in all_mappings.keys():
        all_mappings["labels"] = dict()
    for i, label in enumerate(labels[:MAX_LABELS]):
        if label:
            all_mappings["labels"][label] = ds_labels[i]

    if "features" not in all_mappings.keys():
        all_mappings["features"] = dict()
    for i, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
        if feat:
            all_mappings["features"][feat] = ds_features[i]
    write_column_mapping(all_mappings)


def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
    model_labels = list(model_id2label.values())
    len_model_labels = len(model_labels)
    print(model_labels, model_id2label, 3 % len_model_labels)
    lables = [
        gr.Dropdown(
            label=f"{label}",
            choices=model_labels,
            value=model_id2label[i % len_model_labels],
            interactive=True,
            visible=True,
        )
        for i, label in enumerate(ds_labels[:MAX_LABELS])
    ]
    lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
    # TODO: Substitute 'text' with more features for zero-shot
    features = [
        gr.Dropdown(
            label=f"{feature}",
            choices=ds_features,
            value=ds_features[0],
            interactive=True,
            visible=True,
        )
        for feature in ["text"]
    ]
    features += [
        gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
    ]
    return lables + features


def check_model_and_show_prediction(
    model_id, dataset_id, dataset_config, dataset_split
):
    ppl = check_model(model_id)
    if ppl is None or not isinstance(ppl, TextClassificationPipeline):
        gr.Warning("Please check your model.")
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            *[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
        )

    dropdown_placement = [
        gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
    ]

    if ppl is None:  # pipeline not found
        gr.Warning("Model not found")
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            *dropdown_placement,
        )
    model_id2label = ppl.model.config.id2label
    ds_labels, ds_features = get_labels_and_features_from_dataset(
        dataset_id, dataset_config, dataset_split
    )

    # when dataset does not have labels or features
    if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
        # gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            *dropdown_placement,
        )

    column_mappings = list_labels_and_features_from_dataset(
        ds_labels,
        ds_features,
        model_id2label,
    )

    # when labels or features are not aligned
    # show manually column mapping
    if (
        collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
        or ds_features[0] != "text"
    ):
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True, open=True),
            *column_mappings,
        )

    prediction_input, prediction_output = get_example_prediction(
        ppl, dataset_id, dataset_config, dataset_split
    )
    return (
        gr.update(value=prediction_input, visible=True),
        gr.update(value=prediction_output, visible=True),
        gr.update(visible=True, open=False),
        *column_mappings,
    )


def try_submit(m_id, d_id, config, split, local, uid):
    all_mappings = read_column_mapping(CONFIG_PATH)

    if all_mappings is None:
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return (gr.update(interactive=True), gr.update(visible=False))

    if "labels" not in all_mappings.keys():
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return (gr.update(interactive=True), gr.update(visible=False))
    label_mapping = all_mappings["labels"]

    if "features" not in all_mappings.keys():
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return (gr.update(interactive=True), gr.update(visible=False))
    feature_mapping = all_mappings["features"]

    # TODO: Set column mapping for some dataset such as `amazon_polarity`
    if local:
        command = [
            "giskard_scanner",
            "--loader",
            "huggingface",
            "--model",
            m_id,
            "--dataset",
            d_id,
            "--dataset_config",
            config,
            "--dataset_split",
            split,
            "--hf_token",
            os.environ.get(HF_WRITE_TOKEN),
            "--discussion_repo",
            os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
            "--output_format",
            "markdown",
            "--output_portal",
            "huggingface",
            "--feature_mapping",
            json.dumps(feature_mapping),
            "--label_mapping",
            json.dumps(label_mapping),
            "--scan_config",
            "../config.yaml",
        ]

        eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
        logging.info(f"Start local evaluation on {eval_str}")
        save_job_to_pipe(uid, command, threading.Lock())
        write_log_to_user_file(
            uid,
            f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
        )
        gr.Info(f"Start local evaluation on {eval_str}")

        return (
            gr.update(interactive=False),
            gr.update(lines=5, visible=True, interactive=False),
        )

    else:
        gr.Info("TODO: Submit task to an endpoint")

    return (gr.update(interactive=True), gr.update(visible=False))  # Submit button