Spaces:
Running
Running
File size: 2,895 Bytes
b6a7e2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import argparse
from giskard_cicd.loaders import GithubLoader, HuggingFaceLoader
from giskard_cicd.pipeline.runner import PipelineRunner
from automation import create_discussion
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="Giskard Scanner", description="Scans a model for vulnerabilities and produces a report."
)
parser.add_argument(
"--loader",
help="Which loader to use to set up the model. Currently only `github` and `huggingface` are supported.",
required=True,
)
parser.add_argument("--model", help="The model to scan.", required=True)
parser.add_argument("--dataset", help="The validation or test dataset that will be used.")
parser.add_argument(
"--dataset_split", help="The split of the dataset to use. If not provided, the best split will be selected."
)
parser.add_argument("--dataset_config", help="The name of the dataset config subset to use.")
parser.add_argument("--scan_config", help="Path to YAML file containing the configuration of the scan.")
parser.add_argument("--output", help="Optional name of the output file.")
parser.add_argument("--output_format", help="Format of the report (either HTML or markdown). Default is HTML.")
parser.add_argument("--output_portal", help="The output portal of the report (either huggingface or local directory). Default is local.")
parser.add_argument("--discussion_repo", help="The repo to push the report to.")
parser.add_argument("--hf_token", help="The token to push the report to the repo.")
args = parser.parse_args()
supported_loaders = {
"huggingface": HuggingFaceLoader(),
"github": GithubLoader(),
}
runner = PipelineRunner(loaders=supported_loaders)
runner_kwargs = {"loader_id": args.loader,
"model": args.model,
"dataset": args.dataset,
"scan_config": args.scan_config}
if args.loader == "huggingface":
runner_kwargs.update({"dataset_split": args.dataset_split,
"dataset_config": args.dataset_config})
report = runner.run(**runner_kwargs)
# In the future, write markdown report or directly push to discussion.
if args.output_format == "markdown":
rendered_report = report.to_markdown(template="github")
else:
rendered_report = report.to_html()
if args.output_portal == "huggingface":
# Push to discussion
create_discussion(args.discussion_repo, args.model, args.hf_token, rendered_report)
if args.output:
with open(args.output, "w") as f:
f.write(rendered_report)
else:
# To stdout
# print(rendered_report)
model_name = args.model.split("/")[-1]
with open(f"{model_name}_report.html", "w") as f:
f.write(rendered_report)
|