Spaces:
Sleeping
Sleeping
File size: 4,294 Bytes
77961b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import datasets
import logging
import pandas as pd
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
for model_label in id2label_mapping.keys():
if model_label.upper() == label.upper():
return model_label, label
return None, label
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
dataset_labels = None
for feature in dataset_features.values():
if not isinstance(feature, datasets.ClassLabel):
continue
if len(feature.names) != len(id2label_mapping.keys()):
continue
dataset_labels = feature.names
# Try to match labels
for label in feature.names:
if label in id2label_mapping.keys():
model_label = label
else:
# Try to find case unsensative
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
if model_label is not None:
id2label_mapping[model_label] = label
return id2label_mapping, dataset_labels
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
# We assume dataset is ok here
ds = datasets.load_dataset(d_id, config)[split]
try:
dataset_features = ds.features
except AttributeError:
# Dataset does not have features, need to provide everything
return None, None, None
# Check whether we need to infer the text input column
infer_text_input_column = True
if "text" in column_mapping.keys():
dataset_text_column = column_mapping["text"]
if dataset_text_column in dataset_features.keys():
infer_text_input_column = False
else:
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
if infer_text_input_column:
# Try to retrieve one
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
if len(candidates) > 0:
logging.debug(f"Candidates are {candidates}")
column_mapping["text"] = candidates[0]
else:
# Not found a text feature
return column_mapping, None, None
# Load dataset as DataFrame
df = ds.to_pandas()
# Retrieve all labels
id2label_mapping = {}
id2label = ppl.model.config.id2label
label2id = {v: k for k, v in id2label.items()}
prediction_result = None
try:
# Use the first item to test prediction
results = ppl({"text": df.head(1).at[0, column_mapping["text"]]}, top_k=None)
prediction_result = {
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
}
except Exception:
# Pipeline prediction failed, need to provide labels
return column_mapping, None, None
# Infer labels
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
if "label" in column_mapping.keys():
if not isinstance(column_mapping["label"], dict) or set(column_mapping["label"].values()) != set(dataset_labels):
logging.warning(f'Provided {column_mapping["label"]} does not match labels in Dataset')
return column_mapping, prediction_result, None
if isinstance(column_mapping["label"], dict):
for model_label in id2label_mapping.keys():
id2label_mapping[model_label] = column_mapping["label"][str(label2id[model_label])]
elif None in id2label_mapping.values():
column_mapping["label"] = {
i: None for i in id2label.keys()
}
return column_mapping, prediction_result, None
id2label_df = pd.DataFrame({
"ID": [i for i in id2label.keys()],
"Model labels": [id2label[label] for label in id2label.keys()],
"Dataset labels": [id2label_mapping[id2label[label]] for label in id2label.keys()],
})
if "label" not in column_mapping.keys():
column_mapping["label"] = {
i: id2label_mapping[id2label[i]] for i in id2label.keys()
}
return column_mapping, prediction_result, id2label_df
|