File size: 24,332 Bytes
747ccea
 
fe67895
90e9b67
0fbbd89
749529a
071b7e9
9f4a039
46b5d6c
79997b0
54a4802
3c698c1
 
 
0e5afe0
0fbbd89
6da265e
c36dc6b
6da265e
d59bb1e
 
 
 
6da265e
0fbbd89
90e9b67
 
c3ae439
90e9b67
 
 
 
 
747ccea
0fbbd89
8f71308
0fbbd89
5fd7b47
 
0fbbd89
9f4a039
0fbbd89
ca69132
d8a457b
749529a
9f4a039
 
 
 
 
 
 
 
749529a
 
071b7e9
2d978fc
9f4a039
f6e3821
9f4a039
 
 
 
 
747ccea
90e9b67
0fbbd89
d8a457b
9f4a039
 
 
90e9b67
 
 
9f4a039
 
2d978fc
 
90e9b67
 
9f4a039
 
 
 
0fbbd89
4f42976
0fbbd89
f6e3821
0fbbd89
884361c
 
 
 
0fbbd89
4f42976
 
 
 
 
 
f6e3821
4f42976
c8b6371
ca69132
0fbbd89
ca69132
d8a457b
ca69132
 
f6e3821
0fbbd89
c8b6371
749529a
 
d8a457b
4f42976
d8a457b
4f42976
c8b6371
f6e3821
b058138
06ef6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b5d6c
06ef6db
46b5d6c
06ef6db
 
 
46b5d6c
06ef6db
2bb387f
749529a
06ef6db
f6e3821
 
 
06ef6db
0fbbd89
f6e3821
06ef6db
c8b6371
06ef6db
f6e3821
06ef6db
 
46b5d6c
f6e3821
79997b0
b50c10b
 
 
 
 
 
 
 
 
06ef6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50c10b
 
06ef6db
b50c10b
 
06ef6db
b25fdc4
06ef6db
b9810ca
79997b0
b25fdc4
 
 
06ef6db
 
79997b0
b25fdc4
79997b0
b50c10b
b25fdc4
 
 
 
06ef6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50c10b
 
 
 
 
 
 
 
 
 
79997b0
06ef6db
79997b0
 
 
0fbbd89
66fa514
 
 
 
8f71308
3c698c1
2bb387f
f6e3821
8f71308
f6e3821
 
dea516f
 
 
 
 
3c698c1
 
 
 
 
 
 
 
 
66fa514
 
4f42976
79997b0
3c698c1
 
2442eca
1071ed2
3c698c1
 
 
b50c10b
 
6fd59f1
 
884361c
d8a457b
 
 
884361c
71edfae
95a32d4
dea516f
71edfae
 
 
749529a
 
3c698c1
 
 
 
 
 
 
 
 
2013128
 
1071ed2
 
0fbbd89
3c698c1
 
 
d8a457b
0fbbd89
d8a457b
3c698c1
 
 
 
 
1071ed2
3c698c1
2013128
0fbbd89
 
d8a457b
2013128
d8a457b
 
5d1bacd
 
 
 
 
 
 
 
 
d8a457b
 
2013128
 
3c698c1
 
 
 
707bf52
1071ed2
707bf52
 
 
1071ed2
3c698c1
 
 
 
 
1071ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd59f1
 
884361c
 
 
95a32d4
884361c
 
 
c8b6371
ca69132
c8b6371
f6e3821
ca69132
c8b6371
 
ca69132
 
 
884361c
ca69132
884361c
ca69132
884361c
 
6fd59f1
 
dea516f
 
 
 
 
 
46b5d6c
dea516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ef6db
79997b0
 
 
 
 
 
 
 
 
b50c10b
 
 
 
06ef6db
b50c10b
 
 
 
 
 
79997b0
 
 
 
 
b50c10b
 
06ef6db
 
 
 
 
79997b0
 
b50c10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79997b0
 
5d1bacd
b50c10b
 
79997b0
 
b50c10b
 
 
 
b9810ca
b50c10b
 
 
 
 
b9810ca
b50c10b
 
 
 
 
 
 
 
 
 
5d1bacd
b50c10b
6311e3f
b50c10b
b3bb461
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
import json
import io
import traceback
import csv

# ์ถ”๋ก  API ํด๋ผ์ด์–ธํŠธ ์„ค์ •
hf_client = InferenceClient(
    "CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN")
)

def load_code(filename: str) -> str:
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            return file.read()
    except FileNotFoundError:
        return f"{filename} ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค."
    except Exception as e:
        return f"ํŒŒ์ผ์„ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"

def load_parquet(filename: str) -> str:
    try:
        df = pd.read_parquet(filename, engine='pyarrow')
        return df.head(10).to_markdown(index=False)
    except FileNotFoundError:
        return f"{filename} ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค."
    except Exception as e:
        return f"ํŒŒ์ผ์„ ์ฝ๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"

def respond(
    message: str,
    history: List[Dict[str, str]],
    system_message: str = "",
    max_tokens: int = 4000,
    temperature: float = 0.5,
    top_p: float = 0.9,
    parquet_data: str = None
) -> str:
    # ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ ์„ค์ •
    if parquet_data:
        system_prefix = """๋ฐ˜๋“œ์‹œ ํ•œ๊ธ€๋กœ ๋‹ต๋ณ€ํ•  ๊ฒƒ. ๋„ˆ๋Š” ์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์งˆ๋ฌธ์— ๋‹ต๋ณ€ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋„์›€์ด ๋˜๋Š” ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ผ. ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ƒ์„ธํ•˜๊ณ  ์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋˜, ๋ฏผ๊ฐํ•œ ์ •๋ณด๋‚˜ ๊ฐœ์ธ ์ •๋ณด๋ฅผ ๋…ธ์ถœํ•˜์ง€ ๋งˆ๋ผ."""
        try:
            df = pd.read_json(io.StringIO(parquet_data))
            # ๋ฐ์ดํ„ฐ์˜ ์š”์•ฝ ์ •๋ณด ์ƒ์„ฑ
            data_summary = df.describe(include='all').to_string()
            system_prefix += f"\n\n์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์˜ ์š”์•ฝ ์ •๋ณด:\n{data_summary}"
        except Exception as e:
            print(f"๋ฐ์ดํ„ฐ ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}\n{traceback.format_exc()}")
            system_prefix += "\n\n๋ฐ์ดํ„ฐ๋ฅผ ๋กœ๋“œํ•˜๋Š” ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค."
    else:
        system_prefix = system_message or "๋„ˆ๋Š” AI ์กฐ์–ธ์ž ์—ญํ• ์ด๋‹ค."

    # ๋ฉ”์‹œ์ง€ ์ƒ์„ฑ
    prompt = system_prefix + "\n\n"
    for chat in history:
        if chat['role'] == 'user':
            prompt += f"์‚ฌ์šฉ์ž: {chat['content']}\n"
        else:
            prompt += f"AI: {chat['content']}\n"
    prompt += f"์‚ฌ์šฉ์ž: {message}\nAI:"

    try:
        # ๋ชจ๋ธ์— ๋ฉ”์‹œ์ง€ ์ „์†ก ๋ฐ ์‘๋‹ต ๋ฐ›๊ธฐ
        response = ""
        stream = hf_client.text_generation(
            prompt=prompt,
            max_new_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        )
        for msg in stream:
            if msg:
                response += msg
                yield response
    except Exception as e:
        error_message = f"์ถ”๋ก  ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}\n{traceback.format_exc()}"
        print(error_message)
        yield error_message

def upload_csv(file_path: str) -> Tuple[str, str]:
    try:
        # CSV ํŒŒ์ผ ์ฝ๊ธฐ
        df = pd.read_csv(file_path, sep=',')
        # ํ•„์ˆ˜ ์ปฌ๋Ÿผ ํ™•์ธ
        required_columns = {'id', 'text', 'label', 'metadata'}
        available_columns = set(df.columns)
        missing_columns = required_columns - available_columns
        if missing_columns:
            return f"CSV ํŒŒ์ผ์— ๋‹ค์Œ ํ•„์ˆ˜ ์ปฌ๋Ÿผ์ด ๋ˆ„๋ฝ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: {', '.join(missing_columns)}", ""
        # ๋ฐ์ดํ„ฐ ํด๋ Œ์ง•
        df.drop_duplicates(inplace=True)
        df.fillna('', inplace=True)
        # ๋ฐ์ดํ„ฐ ์œ ํ˜• ์ตœ์ ํ™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
        # Parquet ํŒŒ์ผ๋กœ ๋ณ€ํ™˜
        parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
        return f"{parquet_filename} ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์—…๋กœ๋“œ๋˜๊ณ  ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.", parquet_filename
    except Exception as e:
        return f"CSV ํŒŒ์ผ ์—…๋กœ๋“œ ๋ฐ ๋ณ€ํ™˜ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", ""

def upload_parquet(file_path: str) -> Tuple[str, str, str]:
    try:
        # Parquet ํŒŒ์ผ ์ฝ๊ธฐ
        df = pd.read_parquet(file_path, engine='pyarrow')
        # Markdown์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
        parquet_content = df.head(10).to_markdown(index=False)
        # DataFrame์„ JSON ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜
        parquet_json = df.to_json(orient='records', force_ascii=False)
        return "Parquet ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์—…๋กœ๋“œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.", parquet_content, parquet_json
    except Exception as e:
        return f"Parquet ํŒŒ์ผ ์—…๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", "", ""

def text_to_parquet(text: str) -> Tuple[str, str, str]:
    try:
        from io import StringIO
        import csv
        
        # ์ž…๋ ฅ ํ…์ŠคํŠธ ์ •์ œ
        lines = text.strip().split('\n')
        cleaned_lines = []
        
        for line in lines:
            # ๋นˆ ์ค„ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
            if not line.strip():
                continue
            
            # ์Œ๋”ฐ์˜ดํ‘œ ์ •๊ทœํ™”
            line = line.replace('""', '"')  # ์ค‘๋ณต ์Œ๋”ฐ์˜ดํ‘œ ์ฒ˜๋ฆฌ
            
            # CSV ํŒŒ์‹ฑ์„ ์œ„ํ•œ ์ž„์‹œ StringIO ๊ฐ์ฒด ์ƒ์„ฑ
            temp_buffer = StringIO(line)
            try:
                # CSV ๋ผ์ธ ํŒŒ์‹ฑ ์‹œ๋„
                reader = csv.reader(temp_buffer, quoting=csv.QUOTE_ALL)
                parsed_line = next(reader)
                if len(parsed_line) == 4:  # id, text, label, metadata
                    # ๊ฐ ํ•„๋“œ๋ฅผ ์ ์ ˆํžˆ ํฌ๋งทํŒ…
                    formatted_line = f'{parsed_line[0]},"{parsed_line[1]}","{parsed_line[2]}","{parsed_line[3]}"'
                    cleaned_lines.append(formatted_line)
            except:
                continue
            finally:
                temp_buffer.close()
        
        # ์ •์ œ๋œ CSV ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
        cleaned_csv = '\n'.join(cleaned_lines)
        
        # DataFrame ์ƒ์„ฑ
        df = pd.read_csv(
            StringIO(cleaned_csv),
            sep=',',
            quoting=csv.QUOTE_ALL,
            escapechar='\\',
            names=['id', 'text', 'label', 'metadata']
        )
        
        # ๋ฐ์ดํ„ฐ ์œ ํ˜• ์ตœ์ ํ™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'string', 'metadata': 'string'})
        
        # Parquet ํŒŒ์ผ๋กœ ๋ณ€ํ™˜
        parquet_filename = 'text_to_parquet.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
        
        # Parquet ํŒŒ์ผ ๋‚ด์šฉ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
        parquet_content = load_parquet(parquet_filename)
        
        return f"{parquet_filename} ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.", parquet_content, parquet_filename
        
    except Exception as e:
        error_message = f"ํ…์ŠคํŠธ ๋ณ€ํ™˜ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
        print(f"{error_message}\n{traceback.format_exc()}")
        return error_message, "", ""

def preprocess_text_with_llm(input_text: str) -> str:
    if not input_text.strip():
        return "์ž…๋ ฅ ํ…์ŠคํŠธ๊ฐ€ ๋น„์–ด์žˆ์Šต๋‹ˆ๋‹ค."
        
    system_prompt = """๋‹น์‹ ์€ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค. ์ž…๋ ฅ๋œ ํ…์ŠคํŠธ๋ฅผ CSV ๋ฐ์ดํ„ฐ์…‹ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜์„ธ์š”.

๊ทœ์น™:
1. ์ถœ๋ ฅ ํ˜•์‹: id,text,label,metadata
2. id: 1๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” ์ˆœ์ฐจ์  ๋ฒˆํ˜ธ
3. text: ์˜๋ฏธ ์žˆ๋Š” ๋‹จ์œ„๋กœ ๋ถ„๋ฆฌ๋œ ํ…์ŠคํŠธ
4. label: ํ…์ŠคํŠธ์˜ ์ฃผ์ œ๋‚˜ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ์•„๋ž˜ ๊ธฐ์ค€์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ํ•œ ๊ฐœ๋งŒ ์„ ํƒ
   - Historical_Figure (์—ญ์‚ฌ์  ์ธ๋ฌผ)
   - Military_History (๊ตฐ์‚ฌ ์—ญ์‚ฌ)
   - Technology (๊ธฐ์ˆ )
   - Politics (์ •์น˜)
   - Culture (๋ฌธํ™”)
5. metadata: ๋‚ ์งœ, ์ถœ์ฒ˜ ๋“ฑ ์ถ”๊ฐ€ ์ •๋ณด

์ค‘์š”:
- ๋™์ผํ•œ ํ…์ŠคํŠธ๋ฅผ ๋ฐ˜๋ณตํ•ด์„œ ์ถœ๋ ฅํ•˜์ง€ ๋ง ๊ฒƒ
- ๊ฐ ํ…์ŠคํŠธ๋Š” ํ•œ ๋ฒˆ๋งŒ ์ฒ˜๋ฆฌํ•˜์—ฌ ๊ฐ€์žฅ ์ ํ•ฉํ•œ label์„ ์„ ํƒํ•  ๊ฒƒ
- ์ž…๋ ฅ ํ…์ŠคํŠธ๋ฅผ ์˜๋ฏธ ๋‹จ์œ„๋กœ ์ ์ ˆํžˆ ๋ถ„๋ฆฌํ•  ๊ฒƒ

์˜ˆ์‹œ:
1,"์ด์ˆœ์‹ ์€ ์กฐ์„  ์ค‘๊ธฐ์˜ ๋ฌด์‹ ์ด๋‹ค.","Historical_Figure","์กฐ์„ ์‹œ๋Œ€, ์œ„ํ‚ค๋ฐฑ๊ณผ"

์ฃผ์˜์‚ฌํ•ญ:
- text์— ์‰ผํ‘œ๊ฐ€ ์žˆ์œผ๋ฉด ํฐ๋”ฐ์˜ดํ‘œ๋กœ ๊ฐ์‹ธ๊ธฐ
- ํฐ๋”ฐ์˜ดํ‘œ๋Š” ๋ฐฑ์Šฌ๋ž˜์‹œ๋กœ ์ด์Šค์ผ€์ดํ”„ ์ฒ˜๋ฆฌ
- ๊ฐ ํ–‰์€ ์ƒˆ๋กœ์šด ์ค„๋กœ ๊ตฌ๋ถ„
- ๋ถˆํ•„์š”ํ•œ ๋ฐ˜๋ณต ์ถœ๋ ฅ ๊ธˆ์ง€"""

    full_prompt = f"{system_prompt}\n\n์ž…๋ ฅํ…์ŠคํŠธ:\n{input_text}\n\n์ถœ๋ ฅ:"

    try:
        response = ""
        stream = hf_client.text_generation(
            prompt=full_prompt,
            max_new_tokens=4000,
            temperature=0.1,  # ๋” ๊ฒฐ์ •์ ์ธ ์ถœ๋ ฅ์„ ์œ„ํ•ด ๋‚ฎ์ถค
            top_p=0.9,
            stream=True,
        )
        
        for msg in stream:
            if msg:
                response += msg
        
        # <EOS_TOKEN> ์ด์ „๊นŒ์ง€๋งŒ ์ถ”์ถœํ•˜๊ณ  ์ •์ œ
        if "<EOS_TOKEN>" in response:
            processed_text = response.split("<EOS_TOKEN>")[0].strip()
        else:
            processed_text = response.strip()
            
        # ์ค‘๋ณต ์ถœ๋ ฅ ์ œ๊ฑฐ
        lines = processed_text.split('\n')
        unique_lines = []
        seen_texts = set()
        
        for line in lines:
            line = line.strip()
            if line and '์ถœ๋ ฅ:' not in line and line not in seen_texts:
                unique_lines.append(line)
                seen_texts.add(line)
        
        processed_text = '\n'.join(unique_lines)
        
        # CSV ํ˜•์‹ ๊ฒ€์ฆ
        try:
            from io import StringIO
            import csv
            csv.reader(StringIO(processed_text))
            return processed_text
        except csv.Error:
            return "LLM์ด ์˜ฌ๋ฐ”๋ฅธ CSV ํ˜•์‹์„ ์ƒ์„ฑํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์‹œ ์‹œ๋„ํ•ด์ฃผ์„ธ์š”."
            
    except Exception as e:
        error_message = f"์ „์ฒ˜๋ฆฌ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
        print(error_message)
        return error_message

# CSS ์„ค์ •
css = """
footer {
    visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
    height: 700px;
    overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
    font-size: 14px;
}
/* ์ž…๋ ฅ์ฐฝ ๋ฐฐ๊ฒฝ์ƒ‰ ๋ฐ ๊ธ€์ž์ƒ‰ ๋ณ€๊ฒฝ */
textarea, input[type="text"] {
    background-color: #ffffff; /* ํฐ์ƒ‰ ๋ฐฐ๊ฒฝ */
    color: #000000; /* ๊ฒ€์ •์ƒ‰ ๊ธ€์ž */
}
/* ํŒŒ์ผ ์—…๋กœ๋“œ ์˜์—ญ ๋†’์ด ์กฐ์ ˆ */
#parquet-upload-area {
    max-height: 150px;
    overflow-y: auto;
}
/* ์ดˆ๊ธฐ ์„ค๋ช… ๊ธ€์”จ ํฌ๊ธฐ ์กฐ์ ˆ */
#initial-description {
    font-size: 14px;
}
"""

# Gradio Blocks ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
with gr.Blocks(css=css) as demo:
    gr.Markdown("# My RAG: LLM์ด ๋‚˜๋งŒ์˜ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ์ฝ˜ํ…์ธ  ์ƒ์„ฑ/๋‹ต๋ณ€", elem_id="initial-description")
    gr.Markdown(
        "### 1) ๋‚˜๋งŒ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ ๋˜๋Š” CSV ์—…๋กœ๋“œ๋กœ Parquet ๋ฐ์ดํ„ฐ์…‹ ์ž๋™ ๋ณ€ํ™˜ 2) Parquet ๋ฐ์ดํ„ฐ์…‹์„ ์—…๋กœ๋“œํ•˜๋ฉด, LLM์ด ๋งž์ถค ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ ์‘๋‹ต\n"
        "### Tip) '์˜ˆ์ œ'๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํ™œ์šฉ ๋ฐฉ๋ฒ•์„ ์ฒดํ—˜ํ•˜๊ณ  ์‘์šฉํ•ด ๋ณด์„ธ์š”, ๋ฐ์ดํ„ฐ์…‹ ์—…๋กœ๋“œ์‹œ ๋ฏธ๋ฆฌ๋ณด๊ธฐ๋Š” 10๊ฑด๋งŒ ์ถœ๋ ฅ",
        elem_id="initial-description"
    )



    # ์ฒซ ๋ฒˆ์งธ ํƒญ: ์ฑ—๋ด‡ ๋ฐ์ดํ„ฐ ์—…๋กœ๋“œ (ํƒญ ์ด๋ฆ„ ๋ณ€๊ฒฝ: "My ๋ฐ์ดํ„ฐ์…‹+LLM")
    with gr.Tab("My ๋ฐ์ดํ„ฐ์…‹+LLM"):
        gr.Markdown("### LLM๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ")
        chatbot_data_upload = gr.Chatbot(label="์ฑ—๋ด‡", type="messages", elem_id="chatbot-data-upload")
        msg_data_upload = gr.Textbox(label="๋ฉ”์‹œ์ง€ ์ž…๋ ฅ", placeholder="์—ฌ๊ธฐ์— ๋ฉ”์‹œ์ง€๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”...")
        send_data_upload = gr.Button("์ „์†ก")

        with gr.Accordion("์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ ๋ฐ ์˜ต์…˜ ์„ค์ •", open=False):
            system_message = gr.Textbox(label="System Message", value="๋„ˆ๋Š” AI ์กฐ์–ธ์ž ์—ญํ• ์ด๋‹ค.")
            max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
            top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")

        parquet_data_state = gr.State()

        def handle_message_data_upload(
            message: str,
            history: List[Dict[str, str]],
            system_message: str,
            max_tokens: int,
            temperature: float,
            top_p: float,
            parquet_data: str
        ):
            history = history or []
            try:
                # ์‚ฌ์šฉ์ž์˜ ๋ฉ”์‹œ์ง€๋ฅผ ํžˆ์Šคํ† ๋ฆฌ์— ์ถ”๊ฐ€
                history.append({"role": "user", "content": message})
                # ์‘๋‹ต ์ƒ์„ฑ
                response_gen = respond(
                    message, history, system_message, max_tokens, temperature, top_p, parquet_data
                )
                partial_response = ""
                for partial in response_gen:
                    partial_response = partial
                    # ๋Œ€ํ™” ๋‚ด์—ญ ์—…๋ฐ์ดํŠธ
                    display_history = history + [
                        {"role": "assistant", "content": partial_response}
                    ]
                    yield display_history, ""
                # ์–ด์‹œ์Šคํ„ดํŠธ์˜ ์‘๋‹ต์„ ํžˆ์Šคํ† ๋ฆฌ์— ์ถ”๊ฐ€
                history.append({"role": "assistant", "content": partial_response})
            except Exception as e:
                response = f"์ถ”๋ก  ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
                history.append({"role": "assistant", "content": response})
                yield history, ""

        send_data_upload.click(
            handle_message_data_upload,
            inputs=[
                msg_data_upload,
                chatbot_data_upload,
                system_message,
                max_tokens,
                temperature,
                top_p,
                parquet_data_state,  # parquet_data_state๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ „๋‹ฌ
            ],
            outputs=[chatbot_data_upload, msg_data_upload],
            queue=True
        )

        # ์˜ˆ์ œ ์ถ”๊ฐ€
        with gr.Accordion("์˜ˆ์ œ", open=False):
            gr.Examples(
                examples=[
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์š”์•ฝ ์„ค๋ช…ํ•˜๋ผ."],
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹ ํŒŒ์ผ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, ๋ณธ ์„œ๋น„์Šค๋ฅผ SEO ์ตœ์ ํ™”ํ•˜์—ฌ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ(๊ฐœ์š”, ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ, ๊ธฐ์กด ์œ ์‚ฌ ์ œํ’ˆ/์„œ๋น„์Šค์™€ ๋น„๊ตํ•˜์—ฌ ํŠน์žฅ์ , ํ™œ์šฉ์ฒ˜, ๊ฐ€์น˜, ๊ธฐ๋Œ€ํšจ๊ณผ, ๊ฒฐ๋ก ์„ ํฌํ•จ)๋กœ 4000 ํ† ํฐ ์ด์ƒ ์ž‘์„ฑํ•˜๋ผ"],
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹ ํŒŒ์ผ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, ์‚ฌ์šฉ ๋ฐฉ๋ฒ•๊ณผ ์ฐจ๋ณ„์ , ํŠน์ง•, ๊ฐ•์ ์„ ์ค‘์‹ฌ์œผ๋กœ 4000 ํ† ํฐ ์ด์ƒ ์œ ํŠœ๋ธŒ ์˜์ƒ ์Šคํฌ๋ฆฝํŠธ ํ˜•ํƒœ๋กœ ์ž‘์„ฑํ•˜๋ผ"],
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹ ํŒŒ์ผ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, ์ œํ’ˆ ์ƒ์„ธ ํŽ˜์ด์ง€ ํ˜•์‹์˜ ๋‚ด์šฉ์„ 4000 ํ† ํฐ ์ด์ƒ ์ž์„ธํžˆ ์„ค๋ช…ํ•˜๋ผ"],
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹ ํŒŒ์ผ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, FAQ 20๊ฑด์„ ์ƒ์„ธํ•˜๊ฒŒ ์ž‘์„ฑํ•˜๋ผ. 4000ํ† ํฐ ์ด์ƒ ์‚ฌ์šฉํ•˜๋ผ."],
                    ["์—…๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ์…‹ ํŒŒ์ผ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜์—ฌ, ํŠนํ—ˆ ์ถœ์›์— ํ™œ์šฉํ•  ๊ธฐ์ˆ  ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ ์ธก๋ฉด์„ ํฌํ•จํ•˜์—ฌ ํŠนํ—ˆ ์ถœ์›์„œ ๊ตฌ์„ฑ์— ๋งž๊ฒŒ ํ˜์‹ ์ ์ธ ์ฐฝ์˜ ๋ฐœ๋ช… ๋‚ด์šฉ์„ ์ค‘์‹ฌ์œผ๋กœ 4000 ํ† ํฐ ์ด์ƒ ์ž‘์„ฑํ•˜๋ผ."],
                ],
                inputs=msg_data_upload,
                label="์˜ˆ์ œ ์„ ํƒ",
            )

        # Parquet ํŒŒ์ผ ์—…๋กœ๋“œ๋ฅผ ํ™”๋ฉด ํ•˜๋‹จ์œผ๋กœ ์ด๋™
        gr.Markdown("### Parquet ํŒŒ์ผ ์—…๋กœ๋“œ")
        with gr.Row():
            with gr.Column():
                parquet_upload = gr.File(
                    label="Parquet ํŒŒ์ผ ์—…๋กœ๋“œ", type="filepath", elem_id="parquet-upload-area"
                )
                parquet_upload_button = gr.Button("์—…๋กœ๋“œ")
                parquet_upload_status = gr.Textbox(label="์—…๋กœ๋“œ ์ƒํƒœ", interactive=False)
                parquet_preview_chat = gr.Markdown(label="Parquet ํŒŒ์ผ ๋ฏธ๋ฆฌ๋ณด๊ธฐ")

                def handle_parquet_upload(file_path: str):
                    message, parquet_content, parquet_json = upload_parquet(file_path)
                    if parquet_json:
                        return message, parquet_content, parquet_json
                    else:
                        return message, "", ""

                parquet_upload_button.click(
                    handle_parquet_upload,
                    inputs=parquet_upload,
                    outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
                )

    # ๋‘ ๋ฒˆ์งธ ํƒญ: ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ (ํƒญ ์ด๋ฆ„ ๋ณ€๊ฒฝ: "CSV to My ๋ฐ์ดํ„ฐ์…‹")
    with gr.Tab("CSV to My ๋ฐ์ดํ„ฐ์…‹"):
        gr.Markdown("### CSV ํŒŒ์ผ ์—…๋กœ๋“œ ๋ฐ Parquet ๋ณ€ํ™˜")
        with gr.Row():
            with gr.Column():
                csv_file = gr.File(label="CSV ํŒŒ์ผ ์—…๋กœ๋“œ", type="filepath")
                upload_button = gr.Button("์—…๋กœ๋“œ ๋ฐ ๋ณ€ํ™˜")
                upload_status = gr.Textbox(label="์—…๋กœ๋“œ ์ƒํƒœ", interactive=False)
                parquet_preview = gr.Markdown(label="Parquet ํŒŒ์ผ ๋ฏธ๋ฆฌ๋ณด๊ธฐ")
                download_button = gr.File(label="Parquet ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ", interactive=False)

                def handle_csv_upload(file_path: str):
                    message, parquet_filename = upload_csv(file_path)
                    if parquet_filename:
                        parquet_content = load_parquet(parquet_filename)
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                upload_button.click(
                    handle_csv_upload,
                    inputs=csv_file,
                    outputs=[upload_status, parquet_preview, download_button]
                )

    # ์„ธ ๋ฒˆ์งธ ํƒญ: ํ…์ŠคํŠธ to csv to parquet ๋ณ€ํ™˜ (ํƒญ ์ด๋ฆ„ ๋ณ€๊ฒฝ: "Text to My ๋ฐ์ดํ„ฐ์…‹")
    with gr.Tab("Text to My ๋ฐ์ดํ„ฐ์…‹"):
        gr.Markdown("### ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด CSV๋กœ ๋ณ€ํ™˜ ํ›„ Parquet์œผ๋กœ ์ž๋™ ์ „ํ™˜๋ฉ๋‹ˆ๋‹ค.")
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="ํ…์ŠคํŠธ ์ž…๋ ฅ (๊ฐ ํ–‰์€ `id,text,label,metadata` ํ˜•์‹์œผ๋กœ ์ž…๋ ฅ)",
                    lines=10,
                    placeholder='์˜ˆ: 1,"์ด์ˆœ์‹ ","์žฅ๊ตฐ","๊ฑฐ๋ถ์„ "\n2,"์›๊ท ","์žฅ๊ตฐ","๋ชจํ•จ"\n3,"์„ ์กฐ","์™•","์‹œ๊ธฐ"\n4,"๋„์š”ํ† ๋ฏธ ํžˆ๋ฐ์š”์‹œ","์™•","์นจ๋žต"'
                )
                convert_button = gr.Button("๋ณ€ํ™˜ ๋ฐ ๋‹ค์šด๋กœ๋“œ")
                convert_status = gr.Textbox(label="๋ณ€ํ™˜ ์ƒํƒœ", interactive=False)
                parquet_preview_convert = gr.Markdown(label="Parquet ํŒŒ์ผ ๋ฏธ๋ฆฌ๋ณด๊ธฐ")
                download_parquet_convert = gr.File(label="Parquet ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ", interactive=False)

                def handle_text_to_parquet(text: str):
                    message, parquet_content, parquet_filename = text_to_parquet(text)
                    if parquet_filename:
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                convert_button.click(
                    handle_text_to_parquet,
                    inputs=text_input,
                    outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
                )

    # ๋„ค๋ฒˆ์งธ ํƒญ์˜ UI ๋ถ€๋ถ„ ์ˆ˜์ •
    with gr.Tab("Text Preprocessing with LLM"):
        gr.Markdown("### ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด LLM์ด ๋ฐ์ดํ„ฐ์…‹ ํ˜•์‹์— ๋งž๊ฒŒ ์ „์ฒ˜๋ฆฌํ•˜์—ฌ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.")
        with gr.Row():
            with gr.Column():
                raw_text_input = gr.Textbox(
                    label="ํ…์ŠคํŠธ ์ž…๋ ฅ",
                    lines=15,
                    placeholder="์—ฌ๊ธฐ์— ์ „์ฒ˜๋ฆฌํ•  ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”..."
                )
                
                with gr.Row():
                    preprocess_button = gr.Button("์ „์ฒ˜๋ฆฌ ์‹คํ–‰", variant="primary")
                    clear_button = gr.Button("์ดˆ๊ธฐํ™”")
    
                preprocess_status = gr.Textbox(
                    label="์ „์ฒ˜๋ฆฌ ์ƒํƒœ",
                    interactive=False,
                    value="๋Œ€๊ธฐ ์ค‘..."
                )
                
                processed_text_output = gr.Textbox(
                    label="์ „์ฒ˜๋ฆฌ๋œ ๋ฐ์ดํ„ฐ์…‹ ์ถœ๋ ฅ",
                    lines=15,
                    interactive=False
                )
                
                # Parquet ๋ณ€ํ™˜ ๋ฐ ๋‹ค์šด๋กœ๋“œ ์„น์…˜
                convert_to_parquet_button = gr.Button("Parquet์œผ๋กœ ๋ณ€ํ™˜")
                download_parquet = gr.File(label="๋ณ€ํ™˜๋œ Parquet ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ")




                def handle_text_preprocessing(input_text: str):
                    if not input_text.strip():
                        return "์ž…๋ ฅ ํ…์ŠคํŠธ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.", ""
                    
                    try:
                        preprocess_status_msg = "์ „์ฒ˜๋ฆฌ๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค..."
                        yield preprocess_status_msg, ""
                        
                        processed_text = preprocess_text_with_llm(input_text)
                        
                        if processed_text:
                            preprocess_status_msg = "์ „์ฒ˜๋ฆฌ๊ฐ€ ์™„๋ฃŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค."
                            yield preprocess_status_msg, processed_text
                        else:
                            preprocess_status_msg = "์ „์ฒ˜๋ฆฌ ๊ฒฐ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค."
                            yield preprocess_status_msg, ""
                            
                    except Exception as e:
                        error_msg = f"์ฒ˜๋ฆฌ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
                        yield error_msg, ""

                def clear_inputs():
                    return "", "๋Œ€๊ธฐ ์ค‘...", ""

                def convert_to_parquet_file(processed_text: str):
                    if not processed_text.strip():
                        return "๋ณ€ํ™˜ํ•  ํ…์ŠคํŠธ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.", None
                    
                    try:
                        message, parquet_content, parquet_filename = text_to_parquet(processed_text)
                        if parquet_filename:
                            return message, parquet_filename
                        return message, None
                    except Exception as e:
                        return f"Parquet ๋ณ€ํ™˜ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}", None

                # ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ ์—ฐ๊ฒฐ
                preprocess_button.click(
                    handle_text_preprocessing,
                    inputs=[raw_text_input],
                    outputs=[preprocess_status, processed_text_output],
                    queue=True
                )

                clear_button.click(
                    clear_inputs,
                    outputs=[raw_text_input, preprocess_status, processed_text_output]
                )

                convert_to_parquet_button.click(
                    convert_to_parquet_file,
                    inputs=[processed_text_output],
                    outputs=[preprocess_status, download_parquet]
                )

                # ์˜ˆ์ œ ํ…์ŠคํŠธ ์ถ”๊ฐ€
                with gr.Accordion("์˜ˆ์ œ ํ…์ŠคํŠธ", open=False):
                    gr.Examples(
                        examples=[
                            ["์ด์ˆœ์‹ ์€ ์กฐ์„  ์ค‘๊ธฐ์˜ ๋ฌด์‹ ์ด๋‹ค. ๊ทธ๋Š” ์ž„์ง„์™œ๋ž€ ๋‹น์‹œ ํ•ด๊ตฐ์„ ์ด๋Œ์—ˆ๋‹ค. ๊ฑฐ๋ถ์„ ์„ ๋งŒ๋“ค์–ด ์™œ๊ตฐ๊ณผ ์‹ธ์› ๋‹ค."],
                            ["์ธ๊ณต์ง€๋Šฅ์€ ์ปดํ“จํ„ฐ ๊ณผํ•™์˜ ํ•œ ๋ถ„์•ผ์ด๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต์€ ์ธ๊ณต์ง€๋Šฅ์˜ ํ•˜์œ„ ๋ถ„์•ผ์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ํ•™์Šต์˜ ํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค."]
                        ],
                        inputs=raw_text_input,
                        label="์˜ˆ์ œ ์„ ํƒ"
                    )

    gr.Markdown("### Arxivgpt@gmail.com", elem_id="initial-description")

if __name__ == "__main__":
    demo.launch(share=True)