File size: 13,806 Bytes
747ccea fe67895 90e9b67 0fbbd89 f779047 54a4802 e74c3bc 0e5afe0 0fbbd89 6da265e c36dc6b 6da265e c36dc6b 6da265e 0fbbd89 90e9b67 c3ae439 90e9b67 c36dc6b de57dc5 6da265e 747ccea 0fbbd89 8f71308 0fbbd89 d8a457b 0fbbd89 d8a457b 0fbbd89 ca69132 d8a457b 0fbbd89 ea2c4cf d8a457b 0fbbd89 f6e3821 747ccea 90e9b67 0fbbd89 d8a457b 4f42976 90e9b67 4f42976 90e9b67 c3ae439 90e9b67 8321675 0fbbd89 4f42976 0fbbd89 f6e3821 ea2c4cf 0fbbd89 884361c 0fbbd89 884361c 4f42976 ea2c4cf 4f42976 ea2c4cf 4f42976 f6e3821 4f42976 ea2c4cf c8b6371 ca69132 0fbbd89 ca69132 d8a457b ca69132 f6e3821 ca69132 0fbbd89 c8b6371 884361c d8a457b 4f42976 d8a457b 4f42976 c8b6371 f6e3821 0fbbd89 f6e3821 2bb387f f6e3821 0fbbd89 f6e3821 c8b6371 f6e3821 c8b6371 f6e3821 0fbbd89 66fa514 8f71308 f6e3821 2bb387f f6e3821 8f71308 f6e3821 dea516f 66fa514 4f42976 dea516f 4f42976 884361c 6fd59f1 d8a457b 884361c d8a457b 884361c 71edfae 95a32d4 dea516f 71edfae d8a457b 2013128 d8a457b 2013128 0fbbd89 d8a457b 0fbbd89 d8a457b 2013128 0fbbd89 d8a457b 2013128 d8a457b 2013128 6fd59f1 884361c 95a32d4 884361c c8b6371 ca69132 c8b6371 f6e3821 ca69132 c8b6371 ca69132 884361c ca69132 884361c ca69132 884361c 6fd59f1 dea516f 0fbbd89 4f42976 71edfae 4f42976 d8a457b ca69132 6fd59f1 4f42976 884361c 4f42976 747ccea 0fbbd89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
# μΆλ‘ API ν΄λΌμ΄μΈνΈ μ€μ
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN"))
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
# μ½λ νμΌ λ‘λ
fashion_code = load_code('fashion.cod')
uhdimage_code = load_code('uhdimage.cod')
MixGEN_code = load_code('mgen.cod')
def respond(
message: str,
history: List[Dict[str, str]],
system_message: str = "",
max_tokens: int = 1000,
temperature: float = 0.7,
top_p: float = 0.9,
parquet_data: Dict = None
) -> str:
# μμ€ν
ν둬ννΈ μ€μ
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ£Όμ΄μ§ μμ€μ½λλ₯Ό κΈ°λ°μΌλ‘ "μλΉμ€ μ¬μ© μ€λͺ
λ° μλ΄, Q&Aλ₯Ό νλ μν μ΄λ€". μμ£Ό μΉμ νκ³ μμΈνκ² Markdown νμμΌλ‘ μμ±νλΌ. λλ μ½λλ₯Ό κΈ°λ°μΌλ‘ μ¬μ© μ€λͺ
λ° μ§μ μλ΅μ μ§ννλ©°, μ΄μ©μμκ² λμμ μ£Όμ΄μΌ νλ€. μ΄μ©μκ° κΆκΈν΄ν λ§ν λ΄μ©μ μΉμ νκ² μλ €μ£Όλλ‘ νλΌ. μ½λ μ 체 λ΄μ©μ λν΄μλ 보μμ μ μ§νκ³ , ν€ κ° λ° μλν¬μΈνΈμ ꡬ체μ μΈ λͺ¨λΈμ 곡κ°νμ§ λ§λΌ."""
# Parquet λ°μ΄ν° ν¬ν¨
if parquet_data:
df = pd.read_json(parquet_data)
parquet_content = df.head(10).to_markdown(index=False)
system_prefix += f"\n\nμ
λ‘λλ Parquet νμΌ λ΄μ©:\n```markdown\n{parquet_content}\n```"
message = "μ
λ‘λλ Parquet νμΌμ λν λ΄μ©μ νμ΅νμμ΅λλ€. κ΄λ ¨νμ¬ κΆκΈν μ μ΄ μμΌλ©΄ λ¬Όμ΄λ³΄μΈμ."
# μμ€ν
λ©μμ§μ λν κΈ°λ‘ κ²°ν©
messages = [{"role": "system", "content": system_prefix}]
for chat in history:
messages.append({"role": chat['role'], "content": chat['content']})
messages.append({"role": "user", "content": message})
try:
# λͺ¨λΈμ λ©μμ§ μ μ‘ λ° μλ΅ λ°κΈ°
response = ""
for msg in hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
response += token
yield response
except Exception as e:
yield f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
# CSV νμΌ μ½κΈ°
df = pd.read_csv(file_path, sep=',')
# νμ μ»¬λΌ νμΈ
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νμΌμ λ€μ νμ 컬λΌμ΄ λλ½λμμ΅λλ€: {', '.join(missing_columns)}", ""
# λ°μ΄ν° ν΄λ μ§
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλκ³ λ³νλμμ΅λλ€.", parquet_filename
except Exception as e:
return f"CSV νμΌ μ
λ‘λ λ° λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, str]:
try:
# Parquet νμΌ μ½κΈ°
df = pd.read_parquet(file_path, engine='pyarrow')
# MarkdownμΌλ‘ λ³ννμ¬ λ―Έλ¦¬λ³΄κΈ°
parquet_content = df.head(10).to_markdown(index=False)
# DataFrameμ JSONμΌλ‘ λ³ν
parquet_json = df.to_json()
return "Parquet νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλμμ΅λλ€.", parquet_content, parquet_json
except Exception as e:
return f"Parquet νμΌ μ
λ‘λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", ""
def text_to_parquet(text: str) -> Tuple[str, str, str]:
try:
# ν
μ€νΈλ₯Ό DataFrameμΌλ‘ λ³ν (κ° νμ μ½€λ§λ‘ ꡬλΆ)
data = [line.split(',') for line in text.strip().split('\n')]
df = pd.DataFrame(data, columns=['id', 'text', 'label', 'metadata'])
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet νμΌ λ΄μ© 미리보기
parquet_content = load_parquet(parquet_filename)
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ λ³νλμμ΅λλ€.", parquet_content, parquet_filename
except Exception as e:
return f"ν
μ€νΈ λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", ""
# CSS μ€μ
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 600px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
/* μ
λ ₯μ°½ λ°°κ²½μ λ° κΈμμ λ³κ²½ */
textarea, input[type="text"] {
background-color: #ffffff; /* ν°μ λ°°κ²½ */
color: #000000; /* κ²μ μ κΈμ */
}
"""
# Gradio Blocks μΈν°νμ΄μ€ μ€μ
with gr.Blocks(css=css) as demo:
gr.Markdown("# LLM μλΉμ€ μΈν°νμ΄μ€")
# 첫 λ²μ§Έ ν: μ±λ΄ λ°μ΄ν° μ
λ‘λ (ν μ΄λ¦ λ³κ²½: "My λ°μ΄ν°μ
+LLM")
with gr.Tab("My λ°μ΄ν°μ
+LLM"):
gr.Markdown("### Parquet νμΌ μ
λ‘λ λ° μ§λ¬ΈνκΈ°")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(label="Parquet νμΌ μ
λ‘λ", type="filepath")
parquet_upload_button = gr.Button("μ
λ‘λ")
parquet_upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
parquet_data_state = gr.State()
def handle_parquet_upload(file_path: str):
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", ""
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot_data_upload = gr.Chatbot(label="μ±λ΄", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send_data_upload = gr.Button("μ μ‘")
with gr.Accordion("μμ€ν
ν둬ννΈ λ° μ΅μ
μ€μ ", open=False):
system_message = gr.Textbox(label="System Message", value="λλ AI μ‘°μΈμ μν μ΄λ€.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
def handle_message_data_upload(message: str, history: List[Dict[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, parquet_data: str):
history = history or []
history.append({"role": "user", "content": message})
try:
# μλ΅ μμ±
response_gen = respond(message, history, system_message, max_tokens, temperature, top_p, parquet_data)
partial_response = ""
for partial in response_gen:
partial_response = partial
# μ΄μμ€ν΄νΈμ λ§μ§λ§ λ©μμ§λ₯Ό μ
λ°μ΄νΈνμ¬ μ€νΈλ¦¬λ° ν¨κ³Ό μ 곡
if len(history) > 0 and history[-1]['role'] == 'assistant':
history[-1]['content'] = partial_response
else:
history.append({"role": "assistant", "content": partial_response})
yield history, ""
except Exception as e:
response = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
history.append({"role": "assistant", "content": response})
yield history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[msg_data_upload, chatbot_data_upload, system_message, max_tokens, temperature, top_p, parquet_data_state],
outputs=[chatbot_data_upload, msg_data_upload],
queue=True
)
# λ λ²μ§Έ ν: λ°μ΄ν° λ³ν (ν μ΄λ¦ λ³κ²½: "CSV to My λ°μ΄ν°μ
")
with gr.Tab("CSV to My λ°μ΄ν°μ
"):
gr.Markdown("### CSV νμΌ μ
λ‘λ λ° Parquet λ³ν")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV νμΌ μ
λ‘λ", type="filepath")
upload_button = gr.Button("μ
λ‘λ λ° λ³ν")
upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_button = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_csv_upload(file_path: str):
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
parquet_content = load_parquet(parquet_filename)
return message, parquet_content, parquet_filename
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
# μΈ λ²μ§Έ ν: ν
μ€νΈ to csv to parquet λ³ν (ν μ΄λ¦ λ³κ²½: "Text to My λ°μ΄ν°μ
")
with gr.Tab("Text to My λ°μ΄ν°μ
"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ CSVλ‘ λ³ν ν ParquetμΌλ‘ μλ μ νλ©λλ€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯ (κ° νμ `id,text,label,metadata` νμμΌλ‘ μ
λ ₯)",
lines=10,
placeholder="μ: 1,Sample Text,Label1,Metadata1\n2,Another Text,Label2,Metadata2"
)
convert_button = gr.Button("λ³ν λ° λ€μ΄λ‘λ")
convert_status = gr.Textbox(label="λ³ν μν", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_parquet_convert = gr.File(label="Parquet νμΌ λ€μ΄λ‘λ", interactive=False)
def handle_text_to_parquet(text: str):
message, parquet_content, parquet_filename = text_to_parquet(text)
if parquet_filename:
return message, parquet_content, parquet_filename
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# μ£Όμ μ¬ν
gr.Markdown("## μ£Όμ μ¬ν")
gr.Markdown("""
- **CSV μ
λ‘λ**: CSV νμΌμ μ
λ‘λνλ©΄ μλμΌλ‘ Parquet νμΌλ‘ λ³νλ©λλ€. CSV νμΌμ λ°λμ **μ½€λ§(`,`)**λ‘ κ΅¬λΆλμ΄μΌ ν©λλ€.
- **Parquet 미리보기**: μ
λ‘λλ Parquet νμΌμ 첫 10κ° νμ΄ λ―Έλ¦¬λ³΄κΈ°λ‘ νμλ©λλ€.
- **LLMκ³Όμ λν**: μ
λ‘λλ Parquet νμΌ λ΄μ©μ κΈ°λ°μΌλ‘ LLMμ΄ μλ΅μ μμ±ν©λλ€.
- **Parquet λ€μ΄λ‘λ**: λ³νλ Parquet νμΌμ λ€μ΄λ‘λνλ €λ©΄ λ³νλ νμΌ μμ λ€μ΄λ‘λ λ§ν¬λ₯Ό ν΄λ¦νμΈμ.
- **My λ°μ΄ν°μ
+LLM**: 첫 λ²μ§Έ νμμ Parquet νμΌμ μ
λ‘λνλ©΄ ν΄λΉ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ§λ¬Έκ³Ό λ΅λ³μ μ§νν μ μμ΅λλ€.
- **Text to My λ°μ΄ν°μ
**: μΈ λ²μ§Έ νμμ ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ μλμΌλ‘ CSVλ‘ λ³νλκ³ , λ€μ Parquet νμΌλ‘ μ νλμ΄ λ€μ΄λ‘λν μ μμ΅λλ€.
""")
gr.Markdown("### Gradio μΈν°νμ΄μ€λ₯Ό μ¬μ©νμ¬ LLM λͺ¨λΈκ³Ό μνΈμμ©νμΈμ!")
if __name__ == "__main__":
demo.launch()
|