File size: 13,806 Bytes
747ccea
 
fe67895
90e9b67
0fbbd89
f779047
54a4802
e74c3bc
0e5afe0
0fbbd89
6da265e
c36dc6b
6da265e
 
c36dc6b
6da265e
 
 
0fbbd89
90e9b67
 
c3ae439
90e9b67
 
 
 
 
 
c36dc6b
 
de57dc5
6da265e
747ccea
0fbbd89
8f71308
0fbbd89
d8a457b
0fbbd89
 
d8a457b
0fbbd89
ca69132
d8a457b
0fbbd89
ea2c4cf
d8a457b
 
 
 
 
 
 
0fbbd89
 
f6e3821
 
747ccea
 
90e9b67
0fbbd89
d8a457b
4f42976
90e9b67
 
 
 
 
 
4f42976
90e9b67
c3ae439
90e9b67
 
 
8321675
0fbbd89
4f42976
0fbbd89
f6e3821
ea2c4cf
0fbbd89
884361c
 
 
 
 
0fbbd89
884361c
4f42976
 
 
ea2c4cf
4f42976
 
ea2c4cf
4f42976
f6e3821
4f42976
ea2c4cf
c8b6371
ca69132
0fbbd89
ca69132
d8a457b
ca69132
 
f6e3821
ca69132
0fbbd89
c8b6371
884361c
d8a457b
 
 
 
4f42976
d8a457b
4f42976
c8b6371
f6e3821
0fbbd89
f6e3821
 
 
2bb387f
 
 
f6e3821
 
 
 
0fbbd89
f6e3821
 
c8b6371
f6e3821
c8b6371
f6e3821
0fbbd89
66fa514
 
 
 
8f71308
f6e3821
2bb387f
f6e3821
8f71308
f6e3821
 
dea516f
 
 
 
 
66fa514
 
4f42976
dea516f
4f42976
884361c
6fd59f1
 
d8a457b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
884361c
d8a457b
 
 
884361c
71edfae
95a32d4
dea516f
71edfae
 
 
d8a457b
2013128
d8a457b
2013128
0fbbd89
d8a457b
 
0fbbd89
d8a457b
 
 
 
 
 
 
2013128
0fbbd89
 
d8a457b
2013128
d8a457b
 
 
 
 
2013128
 
6fd59f1
 
884361c
 
 
95a32d4
884361c
 
 
c8b6371
ca69132
c8b6371
f6e3821
ca69132
c8b6371
 
ca69132
 
 
884361c
ca69132
884361c
ca69132
884361c
 
6fd59f1
 
dea516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbbd89
4f42976
 
71edfae
4f42976
d8a457b
ca69132
6fd59f1
 
4f42976
884361c
4f42976
747ccea
 
0fbbd89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple

# μΆ”λ‘  API ν΄λΌμ΄μ–ΈνŠΈ μ„€μ •
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN"))

def load_code(filename: str) -> str:
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            return file.read()
    except FileNotFoundError:
        return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
    except Exception as e:
        return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

def load_parquet(filename: str) -> str:
    try:
        df = pd.read_parquet(filename, engine='pyarrow')
        return df.head(10).to_markdown(index=False)
    except FileNotFoundError:
        return f"{filename} νŒŒμΌμ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
    except Exception as e:
        return f"νŒŒμΌμ„ μ½λŠ” 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

# μ½”λ“œ 파일 λ‘œλ“œ
fashion_code = load_code('fashion.cod')
uhdimage_code = load_code('uhdimage.cod')
MixGEN_code = load_code('mgen.cod')

def respond(
    message: str,
    history: List[Dict[str, str]],
    system_message: str = "",
    max_tokens: int = 1000,
    temperature: float = 0.7,
    top_p: float = 0.9,
    parquet_data: Dict = None
) -> str:
    # μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ μ„€μ •
    system_prefix = """λ°˜λ“œμ‹œ ν•œκΈ€λ‘œ λ‹΅λ³€ν•  것. λ„ˆλŠ” 주어진 μ†ŒμŠ€μ½”λ“œλ₯Ό 기반으둜 "μ„œλΉ„μŠ€ μ‚¬μš© μ„€λͺ… 및 μ•ˆλ‚΄, Q&Aλ₯Ό ν•˜λŠ” 역할이닀". μ•„μ£Ό μΉœμ ˆν•˜κ³  μžμ„Έν•˜κ²Œ Markdown ν˜•μ‹μœΌλ‘œ μž‘μ„±ν•˜λΌ. λ„ˆλŠ” μ½”λ“œλ₯Ό 기반으둜 μ‚¬μš© μ„€λͺ… 및 질의 응닡을 μ§„ν–‰ν•˜λ©°, μ΄μš©μžμ—κ²Œ 도움을 μ£Όμ–΄μ•Ό ν•œλ‹€. μ΄μš©μžκ°€ κΆκΈˆν•΄ν•  λ§Œν•œ λ‚΄μš©μ— μΉœμ ˆν•˜κ²Œ μ•Œλ €μ£Όλ„λ‘ ν•˜λΌ. μ½”λ“œ 전체 λ‚΄μš©μ— λŒ€ν•΄μ„œλŠ” λ³΄μ•ˆμ„ μœ μ§€ν•˜κ³ , ν‚€ κ°’ 및 μ—”λ“œν¬μΈνŠΈμ™€ ꡬ체적인 λͺ¨λΈμ€ κ³΅κ°œν•˜μ§€ 마라."""


    # Parquet 데이터 포함
    if parquet_data:
        df = pd.read_json(parquet_data)
        parquet_content = df.head(10).to_markdown(index=False)
        system_prefix += f"\n\nμ—…λ‘œλ“œλœ Parquet 파일 λ‚΄μš©:\n```markdown\n{parquet_content}\n```"
        message = "μ—…λ‘œλ“œλœ Parquet νŒŒμΌμ— λŒ€ν•œ λ‚΄μš©μ„ ν•™μŠ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€. κ΄€λ ¨ν•˜μ—¬ κΆκΈˆν•œ 점이 있으면 λ¬Όμ–΄λ³΄μ„Έμš”."

    # μ‹œμŠ€ν…œ λ©”μ‹œμ§€μ™€ λŒ€ν™” 기둝 κ²°ν•©
    messages = [{"role": "system", "content": system_prefix}]
    for chat in history:
        messages.append({"role": chat['role'], "content": chat['content']})
    messages.append({"role": "user", "content": message})

    try:
        # λͺ¨λΈμ— λ©”μ‹œμ§€ 전솑 및 응닡 λ°›κΈ°
        response = ""
        for msg in hf_client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = msg.choices[0].delta.get('content', None)
            if token:
                response += token
                yield response
    except Exception as e:
        yield f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

def upload_csv(file_path: str) -> Tuple[str, str]:
    try:
        # CSV 파일 읽기
        df = pd.read_csv(file_path, sep=',')

        # ν•„μˆ˜ 컬럼 확인
        required_columns = {'id', 'text', 'label', 'metadata'}
        available_columns = set(df.columns)
        missing_columns = required_columns - available_columns

        if missing_columns:
            return f"CSV νŒŒμΌμ— λ‹€μŒ ν•„μˆ˜ 컬럼이 λˆ„λ½λ˜μ—ˆμŠ΅λ‹ˆλ‹€: {', '.join(missing_columns)}", ""

        # 데이터 ν΄λ Œμ§•
        df.drop_duplicates(inplace=True)
        df.fillna('', inplace=True)

        # 데이터 μœ ν˜• μ΅œμ ν™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})

        # Parquet 파일둜 λ³€ν™˜
        parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')

        return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜κ³  λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_filename
    except Exception as e:
        return f"CSV 파일 μ—…λ‘œλ“œ 및 λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", ""

def upload_parquet(file_path: str) -> Tuple[str, str, str]:
    try:
        # Parquet 파일 읽기
        df = pd.read_parquet(file_path, engine='pyarrow')

        # Markdown으둜 λ³€ν™˜ν•˜μ—¬ 미리보기
        parquet_content = df.head(10).to_markdown(index=False)

        # DataFrame을 JSON으둜 λ³€ν™˜
        parquet_json = df.to_json()

        return "Parquet 파일이 μ„±κ³΅μ μœΌλ‘œ μ—…λ‘œλ“œλ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_json
    except Exception as e:
        return f"Parquet 파일 μ—…λ‘œλ“œ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", "", ""

def text_to_parquet(text: str) -> Tuple[str, str, str]:
    try:
        # ν…μŠ€νŠΈλ₯Ό DataFrame으둜 λ³€ν™˜ (각 행은 콀마둜 ꡬ뢄)
        data = [line.split(',') for line in text.strip().split('\n')]
        df = pd.DataFrame(data, columns=['id', 'text', 'label', 'metadata'])

        # 데이터 μœ ν˜• μ΅œμ ν™”
        df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})

        # Parquet 파일둜 λ³€ν™˜
        parquet_filename = 'text_to_parquet.parquet'
        df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')

        # Parquet 파일 λ‚΄μš© 미리보기
        parquet_content = load_parquet(parquet_filename)

        return f"{parquet_filename} 파일이 μ„±κ³΅μ μœΌλ‘œ λ³€ν™˜λ˜μ—ˆμŠ΅λ‹ˆλ‹€.", parquet_content, parquet_filename
    except Exception as e:
        return f"ν…μŠ€νŠΈ λ³€ν™˜ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}", "", ""

# CSS μ„€μ •
css = """
footer {
    visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
    height: 600px;
    overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
    font-size: 14px;
}
/* μž…λ ₯μ°½ 배경색 및 κΈ€μžμƒ‰ λ³€κ²½ */
textarea, input[type="text"] {
    background-color: #ffffff; /* 흰색 λ°°κ²½ */
    color: #000000; /* 검정색 κΈ€μž */
}
"""

# Gradio Blocks μΈν„°νŽ˜μ΄μŠ€ μ„€μ •
with gr.Blocks(css=css) as demo:
    gr.Markdown("# LLM μ„œλΉ„μŠ€ μΈν„°νŽ˜μ΄μŠ€")

    # 첫 번째 νƒ­: 챗봇 데이터 μ—…λ‘œλ“œ (νƒ­ 이름 λ³€κ²½: "My 데이터셋+LLM")
    with gr.Tab("My 데이터셋+LLM"):
        gr.Markdown("### Parquet 파일 μ—…λ‘œλ“œ 및 μ§ˆλ¬Έν•˜κΈ°")
        with gr.Row():
            with gr.Column():
                parquet_upload = gr.File(label="Parquet 파일 μ—…λ‘œλ“œ", type="filepath")
                parquet_upload_button = gr.Button("μ—…λ‘œλ“œ")
                parquet_upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
                parquet_preview_chat = gr.Markdown(label="Parquet 파일 미리보기")
                parquet_data_state = gr.State()

                def handle_parquet_upload(file_path: str):
                    message, parquet_content, parquet_json = upload_parquet(file_path)
                    if parquet_json:
                        return message, parquet_content, parquet_json
                    else:
                        return message, "", ""

                parquet_upload_button.click(
                    handle_parquet_upload,
                    inputs=parquet_upload,
                    outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
                )
        
        gr.Markdown("### LLMκ³Ό λŒ€ν™”ν•˜κΈ°")
        chatbot_data_upload = gr.Chatbot(label="챗봇", type="messages", elem_id="chatbot-data-upload")
        msg_data_upload = gr.Textbox(label="λ©”μ‹œμ§€ μž…λ ₯", placeholder="여기에 λ©”μ‹œμ§€λ₯Ό μž…λ ₯ν•˜μ„Έμš”...")
        send_data_upload = gr.Button("전솑")

        with gr.Accordion("μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ 및 μ˜΅μ…˜ μ„€μ •", open=False):
            system_message = gr.Textbox(label="System Message", value="λ„ˆλŠ” AI μ‘°μ–Έμž 역할이닀.")
            max_tokens = gr.Slider(minimum=1, maximum=8000, value=1000, label="Max Tokens")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
            top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")

        def handle_message_data_upload(message: str, history: List[Dict[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, parquet_data: str):
            history = history or []
            history.append({"role": "user", "content": message})
            try:
                # 응닡 생성
                response_gen = respond(message, history, system_message, max_tokens, temperature, top_p, parquet_data)
                partial_response = ""
                for partial in response_gen:
                    partial_response = partial
                    # μ–΄μ‹œμŠ€ν„΄νŠΈμ˜ λ§ˆμ§€λ§‰ λ©”μ‹œμ§€λ₯Ό μ—…λ°μ΄νŠΈν•˜μ—¬ 슀트리밍 효과 제곡
                    if len(history) > 0 and history[-1]['role'] == 'assistant':
                        history[-1]['content'] = partial_response
                    else:
                        history.append({"role": "assistant", "content": partial_response})
                    yield history, ""
            except Exception as e:
                response = f"μΆ”λ‘  쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
                history.append({"role": "assistant", "content": response})
                yield history, ""

        send_data_upload.click(
            handle_message_data_upload,
            inputs=[msg_data_upload, chatbot_data_upload, system_message, max_tokens, temperature, top_p, parquet_data_state],
            outputs=[chatbot_data_upload, msg_data_upload],
            queue=True
        )

    # 두 번째 νƒ­: 데이터 λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "CSV to My 데이터셋")
    with gr.Tab("CSV to My 데이터셋"):
        gr.Markdown("### CSV 파일 μ—…λ‘œλ“œ 및 Parquet λ³€ν™˜")
        with gr.Row():
            with gr.Column():
                csv_file = gr.File(label="CSV 파일 μ—…λ‘œλ“œ", type="filepath")
                upload_button = gr.Button("μ—…λ‘œλ“œ 및 λ³€ν™˜")
                upload_status = gr.Textbox(label="μ—…λ‘œλ“œ μƒνƒœ", interactive=False)
                parquet_preview = gr.Markdown(label="Parquet 파일 미리보기")
                download_button = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)

                def handle_csv_upload(file_path: str):
                    message, parquet_filename = upload_csv(file_path)
                    if parquet_filename:
                        parquet_content = load_parquet(parquet_filename)
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                upload_button.click(
                    handle_csv_upload,
                    inputs=csv_file,
                    outputs=[upload_status, parquet_preview, download_button]
                )

    # μ„Έ 번째 νƒ­: ν…μŠ€νŠΈ to csv to parquet λ³€ν™˜ (νƒ­ 이름 λ³€κ²½: "Text to My 데이터셋")
    with gr.Tab("Text to My 데이터셋"):
        gr.Markdown("### ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ CSV둜 λ³€ν™˜ ν›„ Parquet으둜 μžλ™ μ „ν™˜λ©λ‹ˆλ‹€.")
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="ν…μŠ€νŠΈ μž…λ ₯ (각 행은 `id,text,label,metadata` ν˜•μ‹μœΌλ‘œ μž…λ ₯)",
                    lines=10,
                    placeholder="예: 1,Sample Text,Label1,Metadata1\n2,Another Text,Label2,Metadata2"
                )
                convert_button = gr.Button("λ³€ν™˜ 및 λ‹€μš΄λ‘œλ“œ")
                convert_status = gr.Textbox(label="λ³€ν™˜ μƒνƒœ", interactive=False)
                parquet_preview_convert = gr.Markdown(label="Parquet 파일 미리보기")
                download_parquet_convert = gr.File(label="Parquet 파일 λ‹€μš΄λ‘œλ“œ", interactive=False)

                def handle_text_to_parquet(text: str):
                    message, parquet_content, parquet_filename = text_to_parquet(text)
                    if parquet_filename:
                        return message, parquet_content, parquet_filename
                    else:
                        return message, "", None

                convert_button.click(
                    handle_text_to_parquet,
                    inputs=text_input,
                    outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
                )

    # 주의 사항
    gr.Markdown("## 주의 사항")
    gr.Markdown("""
    - **CSV μ—…λ‘œλ“œ**: CSV νŒŒμΌμ„ μ—…λ‘œλ“œν•˜λ©΄ μžλ™μœΌλ‘œ Parquet 파일둜 λ³€ν™˜λ©λ‹ˆλ‹€. CSV νŒŒμΌμ€ λ°˜λ“œμ‹œ **콀마(`,`)**둜 κ΅¬λΆ„λ˜μ–΄μ•Ό ν•©λ‹ˆλ‹€.
    - **Parquet 미리보기**: μ—…λ‘œλ“œλœ Parquet 파일의 첫 10개 행이 미리보기둜 ν‘œμ‹œλ©λ‹ˆλ‹€.
    - **LLM과의 λŒ€ν™”**: μ—…λ‘œλ“œλœ Parquet 파일 λ‚΄μš©μ„ 기반으둜 LLM이 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
    - **Parquet λ‹€μš΄λ‘œλ“œ**: λ³€ν™˜λœ Parquet νŒŒμΌμ„ λ‹€μš΄λ‘œλ“œν•˜λ €λ©΄ λ³€ν™˜λœ 파일 μ˜†μ˜ λ‹€μš΄λ‘œλ“œ 링크λ₯Ό ν΄λ¦­ν•˜μ„Έμš”.
    - **My 데이터셋+LLM**: 첫 번째 νƒ­μ—μ„œ Parquet νŒŒμΌμ„ μ—…λ‘œλ“œν•˜λ©΄ ν•΄λ‹Ή 데이터λ₯Ό 기반으둜 질문과 닡변을 진행할 수 μžˆμŠ΅λ‹ˆλ‹€.
    - **Text to My 데이터셋**: μ„Έ 번째 νƒ­μ—μ„œ ν…μŠ€νŠΈλ₯Ό μž…λ ₯ν•˜λ©΄ μžλ™μœΌλ‘œ CSV둜 λ³€ν™˜λ˜κ³ , λ‹€μ‹œ Parquet 파일둜 μ „ν™˜λ˜μ–΄ λ‹€μš΄λ‘œλ“œν•  수 μžˆμŠ΅λ‹ˆλ‹€.
    """)

    gr.Markdown("### Gradio μΈν„°νŽ˜μ΄μŠ€λ₯Ό μ‚¬μš©ν•˜μ—¬ LLM λͺ¨λΈκ³Ό μƒν˜Έμž‘μš©ν•˜μ„Έμš”!")

if __name__ == "__main__":
    demo.launch()