chmodel / utils /gradio_helpers.py
fffiloni's picture
Upload folder using huggingface_hub
eaa9650 verified
raw
history blame
17.5 kB
import gradio as gr
from urllib.parse import urlparse
import requests
import time
from PIL import Image
import base64
import io
import uuid
import os
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ["description", "default"]:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def detect_file_type(filename):
audio_extensions = [".mp3", ".wav", ".flac", ".aac", ".ogg", ".m4a"]
image_extensions = [
".jpg",
".jpeg",
".png",
".gif",
".bmp",
".tiff",
".svg",
".webp",
]
video_extensions = [
".mp4",
".mov",
".wmv",
".flv",
".avi",
".avchd",
".mkv",
".webm",
]
# Extract the file extension
if isinstance(filename, str):
extension = filename[filename.rfind(".") :].lower()
# Check the extension against each list
if extension in audio_extensions:
return "audio"
elif extension in image_extensions:
return "image"
elif extension in video_extensions:
return "video"
else:
return "string"
elif isinstance(filename, list):
return "list"
def build_gradio_inputs(ordered_input_schema, example_inputs=None):
inputs = []
input_field_strings = """inputs = []\n"""
names = []
for index, (name, prop) in enumerate(ordered_input_schema):
names.append(name)
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"],
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Dropdown(
choices={prop["enum"]}, label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value="{prop.get("default")}"
))\n"""
elif prop["type"] == "integer":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
minimum=prop.get("minimum"),
maximum=prop.get("maximum"),
step=1,
)
input_field_string = f"""inputs.append(gr.Slider(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
minimum={prop.get("minimum")}, maximum={prop.get("maximum")}, step=1,
))\n"""
else:
input_field = gr.Number(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Number(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif prop["type"] == "number":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
minimum=prop.get("minimum"),
maximum=prop.get("maximum"),
)
input_field_string = f"""inputs.append(gr.Slider(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
minimum={prop.get("minimum")}, maximum={prop.get("maximum")}
))\n"""
else:
input_field = gr.Number(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Number(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif prop["type"] == "boolean":
input_field = gr.Checkbox(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Checkbox(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif (
prop["type"] == "string" and prop.get("format") == "uri" and example_inputs
):
input_type_example = example_inputs.get(name, None)
if input_type_example:
input_type = detect_file_type(input_type_example)
else:
input_type = None
if input_type == "image":
input_field = gr.Image(label=prop.get("title"), type="filepath")
input_field_string = f"""inputs.append(gr.Image(
label="{prop.get("title")}", type="filepath"
))\n"""
elif input_type == "audio":
input_field = gr.Audio(label=prop.get("title"), type="filepath")
input_field_string = f"""inputs.append(gr.Audio(
label="{prop.get("title")}", type="filepath"
))\n"""
elif input_type == "video":
input_field = gr.Video(label=prop.get("title"))
input_field_string = f"""inputs.append(gr.Video(
label="{prop.get("title")}"
))\n"""
else:
input_field = gr.File(label=prop.get("title"))
input_field_string = f"""inputs.append(gr.File(
label="{prop.get("title")}"
))\n"""
else:
input_field = gr.Textbox(
label=prop.get("title"),
info=prop.get("description"),
)
input_field_string = f"""inputs.append(gr.Textbox(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}
))\n"""
inputs.append(input_field)
input_field_strings += f"{input_field_string}\n"
input_field_strings += f"names = {names}\n"
return inputs, input_field_strings, names
def build_gradio_outputs_replicate(output_types):
outputs = []
output_field_strings = """outputs = []\n"""
if output_types:
for output in output_types:
if output == "image":
output_field = gr.Image()
output_field_string = "outputs.append(gr.Image())"
elif output == "audio":
output_field = gr.Audio(type="filepath")
output_field_string = "outputs.append(gr.Audio(type='filepath'))"
elif output == "video":
output_field = gr.Video()
output_field_string = "outputs.append(gr.Video())"
elif output == "string":
output_field = gr.Textbox()
output_field_string = "outputs.append(gr.Textbox())"
elif output == "json":
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
elif output == "list":
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
outputs.append(output_field)
output_field_strings += f"{output_field_string}\n"
else:
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
outputs.append(output_field)
return outputs, output_field_strings
def build_gradio_outputs_cog():
pass
def process_outputs(outputs):
output_values = []
for output in outputs:
if not output:
continue
if isinstance(output, str):
if output.startswith("data:image"):
base64_data = output.split(",", 1)[1]
image_data = base64.b64decode(base64_data)
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
output_values.append(image)
elif output.startswith("data:audio"):
base64_data = output.split(",", 1)[1]
audio_data = base64.b64decode(base64_data)
audio_stream = io.BytesIO(audio_data)
filename = f"{uuid.uuid4()}.wav" # Change format as needed
with open(filename, "wb") as audio_file:
audio_file.write(audio_stream.getbuffer())
output_values.append(filename)
elif output.startswith("data:video"):
base64_data = output.split(",", 1)[1]
video_data = base64.b64decode(base64_data)
video_stream = io.BytesIO(video_data)
# Here you can save the audio or return the stream for further processing
filename = f"{uuid.uuid4()}.mp4" # Change format as needed
with open(filename, "wb") as video_file:
video_file.write(video_stream.getbuffer())
output_values.append(filename)
else:
output_values.append(output)
else:
output_values.append(output)
return output_values
def parse_outputs(data):
if isinstance(data, dict):
# Handle case where data is an object
dict_values = []
for value in data.values():
extracted_values = parse_outputs(value)
# For dict, we append instead of extend to maintain list structure within objects
if isinstance(value, list):
dict_values += [extracted_values]
else:
dict_values += extracted_values
return dict_values
elif isinstance(data, list):
# Handle case where data is an array
list_values = []
for item in data:
# Here we extend to flatten the list since we're already in an array context
list_values += parse_outputs(item)
return list_values
else:
# Handle primitive data types directly
return [data]
def create_dynamic_gradio_app(
inputs,
outputs,
api_url,
api_id=None,
replicate_token=None,
title="",
model_description="",
names=[],
local_base=False,
hostname="0.0.0.0",
):
expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
payload = {"input": {}}
if api_id:
payload["version"] = api_id
parsed_url = urlparse(str(request.url))
if local_base:
base_url = f"http://{hostname}:7860"
else:
base_url = parsed_url.scheme + "://" + parsed_url.netloc
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
print(payload)
headers = {"Content-Type": "application/json"}
if replicate_token:
headers["Authorization"] = f"Token {replicate_token}"
print(headers)
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
# TODO: Add a failing mechanism if the API gets stuck
if response.status_code == 200:
json_response = response.json()
# If the output component is JSON return the entire output response
if outputs[0].get_config()["name"] == "json":
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
difference_outputs = expected_outputs - len(processed_outputs)
# If less outputs than expected, hide the extra ones
if difference_outputs > 0:
extra_outputs = [gr.update(visible=False)] * difference_outputs
processed_outputs.extend(extra_outputs)
# If more outputs than expected, cap the outputs to the expected number if
elif difference_outputs < 0:
processed_outputs = processed_outputs[:difference_outputs]
return (
tuple(processed_outputs)
if len(processed_outputs) > 1
else processed_outputs[0]
)
else:
if response.status_code == 409:
raise gr.Error(
f"Sorry, the Cog image is still processing. Try again in a bit."
)
raise gr.Error(f"The submission failed! Error: {response.status_code}")
app = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
description=model_description,
allow_flagging="never",
)
return app
def create_gradio_app_script(
inputs_string,
outputs_string,
api_url,
api_id=None,
replicate_token=None,
title="",
model_description="",
local_base=False,
hostname="0.0.0.0"
):
headers = {"Content-Type": "application/json"}
if replicate_token:
headers["Authorization"] = f"Token {replicate_token}"
if local_base:
base_url = f'base_url = "http://{hostname}:7860"'
else:
base_url = """parsed_url = urlparse(str(request.url))
base_url = parsed_url.scheme + "://" + parsed_url.netloc"""
headers_string = f"""headers = {headers}\n"""
api_id_value = f'payload["version"] = "{api_id}"' if api_id is not None else ""
definition_string = """expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):"""
payload_string = f"""payload = {{"input": {{}}}}
{api_id_value}
{base_url}
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{{base_url}}/file=" + value
if value is not None and value != "":
payload["input"][key] = value\n"""
request_string = (
f"""response = requests.post("{api_url}", headers=headers, json=payload)\n"""
)
result_string = f"""
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
difference_outputs = expected_outputs - len(processed_outputs)
# If less outputs than expected, hide the extra ones
if difference_outputs > 0:
extra_outputs = [gr.update(visible=False)] * difference_outputs
processed_outputs.extend(extra_outputs)
# If more outputs than expected, cap the outputs to the expected number
elif difference_outputs < 0:
processed_outputs = processed_outputs[:difference_outputs]
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {{response.status_code}}")\n"""
interface_string = f"""title = "{title}"
model_description = "{model_description}"
app = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
description=model_description,
allow_flagging="never",
)
app.launch(share=True)
"""
app_string = f"""import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
{inputs_string}
{outputs_string}
{definition_string}
{headers_string}
{payload_string}
{request_string}
{result_string}
{interface_string}
"""
return app_string