Spaces:
ginipick
/
Running on Zero

File size: 39,629 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
import sys
import copy
import logging
import threading
import heapq
import time
import traceback
from enum import Enum
import inspect
from typing import List, Literal, NamedTuple, Optional

import torch
import nodes

import comfy.model_management
from comfy_execution.graph import get_input_info, ExecutionList, DynamicPrompt, ExecutionBlocker
from comfy_execution.graph_utils import is_link, GraphBuilder
from comfy_execution.caching import HierarchicalCache, LRUCache, CacheKeySetInputSignature, CacheKeySetID
from comfy.cli_args import args

class ExecutionResult(Enum):
    SUCCESS = 0
    FAILURE = 1
    PENDING = 2

class DuplicateNodeError(Exception):
    pass

class IsChangedCache:
    def __init__(self, dynprompt, outputs_cache):
        self.dynprompt = dynprompt
        self.outputs_cache = outputs_cache
        self.is_changed = {}

    def get(self, node_id):
        if node_id in self.is_changed:
            return self.is_changed[node_id]

        node = self.dynprompt.get_node(node_id)
        class_type = node["class_type"]
        class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
        if not hasattr(class_def, "IS_CHANGED"):
            self.is_changed[node_id] = False
            return self.is_changed[node_id]

        if "is_changed" in node:
            self.is_changed[node_id] = node["is_changed"]
            return self.is_changed[node_id]

        # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED
        input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, None)
        try:
            is_changed = _map_node_over_list(class_def, input_data_all, "IS_CHANGED")
            node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
        except Exception as e:
            logging.warning("WARNING: {}".format(e))
            node["is_changed"] = float("NaN")
        finally:
            self.is_changed[node_id] = node["is_changed"]
        return self.is_changed[node_id]

class CacheSet:
    def __init__(self, lru_size=None):
        if lru_size is None or lru_size == 0:
            self.init_classic_cache() 
        else:
            self.init_lru_cache(lru_size)
        self.all = [self.outputs, self.ui, self.objects]

    # Useful for those with ample RAM/VRAM -- allows experimenting without
    # blowing away the cache every time
    def init_lru_cache(self, cache_size):
        self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
        self.ui = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
        self.objects = HierarchicalCache(CacheKeySetID)

    # Performs like the old cache -- dump data ASAP
    def init_classic_cache(self):
        self.outputs = HierarchicalCache(CacheKeySetInputSignature)
        self.ui = HierarchicalCache(CacheKeySetInputSignature)
        self.objects = HierarchicalCache(CacheKeySetID)

    def recursive_debug_dump(self):
        result = {
            "outputs": self.outputs.recursive_debug_dump(),
            "ui": self.ui.recursive_debug_dump(),
        }
        return result

def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, extra_data={}):
    valid_inputs = class_def.INPUT_TYPES()
    input_data_all = {}
    missing_keys = {}
    for x in inputs:
        input_data = inputs[x]
        input_type, input_category, input_info = get_input_info(class_def, x)
        def mark_missing():
            missing_keys[x] = True
            input_data_all[x] = (None,)
        if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)):
            input_unique_id = input_data[0]
            output_index = input_data[1]
            if outputs is None:
                mark_missing()
                continue # This might be a lazily-evaluated input
            cached_output = outputs.get(input_unique_id)
            if cached_output is None:
                mark_missing()
                continue
            if output_index >= len(cached_output):
                mark_missing()
                continue
            obj = cached_output[output_index]
            input_data_all[x] = obj
        elif input_category is not None:
            input_data_all[x] = [input_data]

    if "hidden" in valid_inputs:
        h = valid_inputs["hidden"]
        for x in h:
            if h[x] == "PROMPT":
                input_data_all[x] = [dynprompt.get_original_prompt() if dynprompt is not None else {}]
            if h[x] == "DYNPROMPT":
                input_data_all[x] = [dynprompt]
            if h[x] == "EXTRA_PNGINFO":
                input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
            if h[x] == "UNIQUE_ID":
                input_data_all[x] = [unique_id]
    return input_data_all, missing_keys

map_node_over_list = None #Don't hook this please

def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None):
    # check if node wants the lists
    input_is_list = getattr(obj, "INPUT_IS_LIST", False)

    if len(input_data_all) == 0:
        max_len_input = 0
    else:
        max_len_input = max(len(x) for x in input_data_all.values())
     
    # get a slice of inputs, repeat last input when list isn't long enough
    def slice_dict(d, i):
        return {k: v[i if len(v) > i else -1] for k, v in d.items()}
    
    results = []
    def process_inputs(inputs, index=None):
        if allow_interrupt:
            nodes.before_node_execution()
        execution_block = None
        for k, v in inputs.items():
            if isinstance(v, ExecutionBlocker):
                execution_block = execution_block_cb(v) if execution_block_cb else v
                break
        if execution_block is None:
            if pre_execute_cb is not None and index is not None:
                pre_execute_cb(index)
            results.append(getattr(obj, func)(**inputs))
        else:
            results.append(execution_block)

    if input_is_list:
        process_inputs(input_data_all, 0)
    elif max_len_input == 0:
        process_inputs({})
    else: 
        for i in range(max_len_input):
            input_dict = slice_dict(input_data_all, i)
            process_inputs(input_dict, i)
    return results

def merge_result_data(results, obj):
    # check which outputs need concatenating
    output = []
    output_is_list = [False] * len(results[0])
    if hasattr(obj, "OUTPUT_IS_LIST"):
        output_is_list = obj.OUTPUT_IS_LIST

    # merge node execution results
    for i, is_list in zip(range(len(results[0])), output_is_list):
        if is_list:
            value = []
            for o in results:
                if isinstance(o[i], ExecutionBlocker):
                    value.append(o[i])
                else:
                    value.extend(o[i])
            output.append(value)
        else:
            output.append([o[i] for o in results])
    return output

def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb=None):
    
    results = []
    uis = []
    subgraph_results = []
    return_values = _map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
    has_subgraph = False
    for i in range(len(return_values)):
        r = return_values[i]
        if isinstance(r, dict):
            if 'ui' in r:
                uis.append(r['ui'])
            if 'expand' in r:
                # Perform an expansion, but do not append results
                has_subgraph = True
                new_graph = r['expand']
                result = r.get("result", None)
                if isinstance(result, ExecutionBlocker):
                    result = tuple([result] * len(obj.RETURN_TYPES))
                subgraph_results.append((new_graph, result))
            elif 'result' in r:
                result = r.get("result", None)
                if isinstance(result, ExecutionBlocker):
                    result = tuple([result] * len(obj.RETURN_TYPES))
                results.append(result)
                subgraph_results.append((None, result))
        else:
            if isinstance(r, ExecutionBlocker):
                r = tuple([r] * len(obj.RETURN_TYPES))
            results.append(r)
            subgraph_results.append((None, r))
    
    if has_subgraph:
        output = subgraph_results
    elif len(results) > 0:
        output = merge_result_data(results, obj)
    else:
        output = []
    ui = dict()    
    if len(uis) > 0:
        ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
    return output, ui, has_subgraph

def format_value(x):
    if x is None:
        return None
    elif isinstance(x, (int, float, bool, str)):
        return x
    else:
        return str(x)

def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results):
    unique_id = current_item
    real_node_id = dynprompt.get_real_node_id(unique_id)
    display_node_id = dynprompt.get_display_node_id(unique_id)
    parent_node_id = dynprompt.get_parent_node_id(unique_id)
    inputs = dynprompt.get_node(unique_id)['inputs']
    class_type = dynprompt.get_node(unique_id)['class_type']
    class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
    if caches.outputs.get(unique_id) is not None:
        if server.client_id is not None:
            cached_output = caches.ui.get(unique_id) or {}
            server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_output.get("output",None), "prompt_id": prompt_id }, server.client_id)
        return (ExecutionResult.SUCCESS, None, None)

    input_data_all = None
    try:
        if unique_id in pending_subgraph_results:
            cached_results = pending_subgraph_results[unique_id]
            resolved_outputs = []
            for is_subgraph, result in cached_results:
                if not is_subgraph:
                    resolved_outputs.append(result)
                else:
                    resolved_output = []
                    for r in result:
                        if is_link(r):
                            source_node, source_output = r[0], r[1]
                            node_output = caches.outputs.get(source_node)[source_output]
                            for o in node_output:
                                resolved_output.append(o)

                        else:
                            resolved_output.append(r)
                    resolved_outputs.append(tuple(resolved_output))
            output_data = merge_result_data(resolved_outputs, class_def)
            output_ui = []
            has_subgraph = False
        else:
            input_data_all, missing_keys = get_input_data(inputs, class_def, unique_id, caches.outputs, dynprompt, extra_data)
            if server.client_id is not None:
                server.last_node_id = display_node_id
                server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id)

            obj = caches.objects.get(unique_id)
            if obj is None:
                obj = class_def()
                caches.objects.set(unique_id, obj)

            if hasattr(obj, "check_lazy_status"):
                required_inputs = _map_node_over_list(obj, input_data_all, "check_lazy_status", allow_interrupt=True)
                required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
                required_inputs = [x for x in required_inputs if isinstance(x,str) and (
                    x not in input_data_all or x in missing_keys
                )]
                if len(required_inputs) > 0:
                    for i in required_inputs:
                        execution_list.make_input_strong_link(unique_id, i)
                    return (ExecutionResult.PENDING, None, None)

            def execution_block_cb(block):
                if block.message is not None:
                    mes = {
                        "prompt_id": prompt_id,
                        "node_id": unique_id,
                        "node_type": class_type,
                        "executed": list(executed),

                        "exception_message": f"Execution Blocked: {block.message}",
                        "exception_type": "ExecutionBlocked",
                        "traceback": [],
                        "current_inputs": [],
                        "current_outputs": [],
                    }
                    server.send_sync("execution_error", mes, server.client_id)
                    return ExecutionBlocker(None)
                else:
                    return block
            def pre_execute_cb(call_index):
                GraphBuilder.set_default_prefix(unique_id, call_index, 0)
            output_data, output_ui, has_subgraph = get_output_data(obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb)
        if len(output_ui) > 0:
            caches.ui.set(unique_id, {
                "meta": {
                    "node_id": unique_id,
                    "display_node": display_node_id,
                    "parent_node": parent_node_id,
                    "real_node_id": real_node_id,
                },
                "output": output_ui
            })
            if server.client_id is not None:
                server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
        if has_subgraph:
            cached_outputs = []
            new_node_ids = []
            new_output_ids = []
            new_output_links = []
            for i in range(len(output_data)):
                new_graph, node_outputs = output_data[i]
                if new_graph is None:
                    cached_outputs.append((False, node_outputs))
                else:
                    # Check for conflicts
                    for node_id in new_graph.keys():
                        if dynprompt.has_node(node_id):
                            raise DuplicateNodeError(f"Attempt to add duplicate node {node_id}. Ensure node ids are unique and deterministic or use graph_utils.GraphBuilder.")
                    for node_id, node_info in new_graph.items():
                        new_node_ids.append(node_id)
                        display_id = node_info.get("override_display_id", unique_id)
                        dynprompt.add_ephemeral_node(node_id, node_info, unique_id, display_id)
                        # Figure out if the newly created node is an output node
                        class_type = node_info["class_type"]
                        class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
                        if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
                            new_output_ids.append(node_id)
                    for i in range(len(node_outputs)):
                        if is_link(node_outputs[i]):
                            from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1]
                            new_output_links.append((from_node_id, from_socket))
                    cached_outputs.append((True, node_outputs))
            new_node_ids = set(new_node_ids)
            for cache in caches.all:
                cache.ensure_subcache_for(unique_id, new_node_ids).clean_unused()
            for node_id in new_output_ids:
                execution_list.add_node(node_id)
            for link in new_output_links:
                execution_list.add_strong_link(link[0], link[1], unique_id)
            pending_subgraph_results[unique_id] = cached_outputs
            return (ExecutionResult.PENDING, None, None)
        caches.outputs.set(unique_id, output_data)
    except comfy.model_management.InterruptProcessingException as iex:
        logging.info("Processing interrupted")

        # skip formatting inputs/outputs
        error_details = {
            "node_id": real_node_id,
        }

        return (ExecutionResult.FAILURE, error_details, iex)
    except Exception as ex:
        typ, _, tb = sys.exc_info()
        exception_type = full_type_name(typ)
        input_data_formatted = {}
        if input_data_all is not None:
            input_data_formatted = {}
            for name, inputs in input_data_all.items():
                input_data_formatted[name] = [format_value(x) for x in inputs]

        logging.error(f"!!! Exception during processing !!! {ex}")
        logging.error(traceback.format_exc())

        error_details = {
            "node_id": real_node_id,
            "exception_message": str(ex),
            "exception_type": exception_type,
            "traceback": traceback.format_tb(tb),
            "current_inputs": input_data_formatted
        }
        if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
            logging.error("Got an OOM, unloading all loaded models.")
            comfy.model_management.unload_all_models()

        return (ExecutionResult.FAILURE, error_details, ex)

    executed.add(unique_id)

    return (ExecutionResult.SUCCESS, None, None)

class PromptExecutor:
    def __init__(self, server, lru_size=None):
        self.lru_size = lru_size
        self.server = server
        self.reset()

    def reset(self):
        self.caches = CacheSet(self.lru_size)
        self.status_messages = []
        self.success = True

    def add_message(self, event, data: dict, broadcast: bool):
        data = {
            **data,
            "timestamp": int(time.time() * 1000),
        }
        self.status_messages.append((event, data))
        if self.server.client_id is not None or broadcast:
            self.server.send_sync(event, data, self.server.client_id)

    def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
        node_id = error["node_id"]
        class_type = prompt[node_id]["class_type"]

        # First, send back the status to the frontend depending
        # on the exception type
        if isinstance(ex, comfy.model_management.InterruptProcessingException):
            mes = {
                "prompt_id": prompt_id,
                "node_id": node_id,
                "node_type": class_type,
                "executed": list(executed),
            }
            self.add_message("execution_interrupted", mes, broadcast=True)
        else:
            mes = {
                "prompt_id": prompt_id,
                "node_id": node_id,
                "node_type": class_type,
                "executed": list(executed),
                "exception_message": error["exception_message"],
                "exception_type": error["exception_type"],
                "traceback": error["traceback"],
                "current_inputs": error["current_inputs"],
                "current_outputs": list(current_outputs),
            }
            self.add_message("execution_error", mes, broadcast=False)

    def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
        nodes.interrupt_processing(False)

        if "client_id" in extra_data:
            self.server.client_id = extra_data["client_id"]
        else:
            self.server.client_id = None

        self.status_messages = []
        self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False)

        with torch.inference_mode():
            dynamic_prompt = DynamicPrompt(prompt)
            is_changed_cache = IsChangedCache(dynamic_prompt, self.caches.outputs)
            for cache in self.caches.all:
                cache.set_prompt(dynamic_prompt, prompt.keys(), is_changed_cache)
                cache.clean_unused()

            cached_nodes = []
            for node_id in prompt:
                if self.caches.outputs.get(node_id) is not None:
                    cached_nodes.append(node_id)

            comfy.model_management.cleanup_models(keep_clone_weights_loaded=True)
            self.add_message("execution_cached",
                          { "nodes": cached_nodes, "prompt_id": prompt_id},
                          broadcast=False)
            pending_subgraph_results = {}
            executed = set()
            execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
            current_outputs = self.caches.outputs.all_node_ids()
            for node_id in list(execute_outputs):
                execution_list.add_node(node_id)

            while not execution_list.is_empty():
                node_id, error, ex = execution_list.stage_node_execution()
                if error is not None:
                    self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
                    break

                result, error, ex = execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results)
                self.success = result != ExecutionResult.FAILURE
                if result == ExecutionResult.FAILURE:
                    self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
                    break
                elif result == ExecutionResult.PENDING:
                    execution_list.unstage_node_execution()
                else: # result == ExecutionResult.SUCCESS:
                    execution_list.complete_node_execution()
            else:
                # Only execute when the while-loop ends without break
                self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False)

            ui_outputs = {}
            meta_outputs = {}
            all_node_ids = self.caches.ui.all_node_ids()
            for node_id in all_node_ids:
                ui_info = self.caches.ui.get(node_id)
                if ui_info is not None:
                    ui_outputs[node_id] = ui_info["output"]
                    meta_outputs[node_id] = ui_info["meta"]
            self.history_result = {
                "outputs": ui_outputs,
                "meta": meta_outputs,
            }
            self.server.last_node_id = None
            if comfy.model_management.DISABLE_SMART_MEMORY:
                comfy.model_management.unload_all_models()



def validate_inputs(prompt, item, validated):
    unique_id = item
    if unique_id in validated:
        return validated[unique_id]

    inputs = prompt[unique_id]['inputs']
    class_type = prompt[unique_id]['class_type']
    obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]

    class_inputs = obj_class.INPUT_TYPES()
    valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{})))

    errors = []
    valid = True

    validate_function_inputs = []
    validate_has_kwargs = False
    if hasattr(obj_class, "VALIDATE_INPUTS"):
        argspec = inspect.getfullargspec(obj_class.VALIDATE_INPUTS)
        validate_function_inputs = argspec.args
        validate_has_kwargs = argspec.varkw is not None
    received_types = {}

    for x in valid_inputs:
        type_input, input_category, extra_info = get_input_info(obj_class, x)
        assert extra_info is not None
        if x not in inputs:
            if input_category == "required":
                error = {
                    "type": "required_input_missing",
                    "message": "Required input is missing",
                    "details": f"{x}",
                    "extra_info": {
                        "input_name": x
                    }
                }
                errors.append(error)
            continue

        val = inputs[x]
        info = (type_input, extra_info)
        if isinstance(val, list):
            if len(val) != 2:
                error = {
                    "type": "bad_linked_input",
                    "message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
                    "details": f"{x}",
                    "extra_info": {
                        "input_name": x,
                        "input_config": info,
                        "received_value": val
                    }
                }
                errors.append(error)
                continue

            o_id = val[0]
            o_class_type = prompt[o_id]['class_type']
            r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
            received_type = r[val[1]]
            received_types[x] = received_type
            if 'input_types' not in validate_function_inputs and received_type != type_input:
                details = f"{x}, {received_type} != {type_input}"
                error = {
                    "type": "return_type_mismatch",
                    "message": "Return type mismatch between linked nodes",
                    "details": details,
                    "extra_info": {
                        "input_name": x,
                        "input_config": info,
                        "received_type": received_type,
                        "linked_node": val
                    }
                }
                errors.append(error)
                continue
            try:
                r = validate_inputs(prompt, o_id, validated)
                if r[0] is False:
                    # `r` will be set in `validated[o_id]` already
                    valid = False
                    continue
            except Exception as ex:
                typ, _, tb = sys.exc_info()
                valid = False
                exception_type = full_type_name(typ)
                reasons = [{
                    "type": "exception_during_inner_validation",
                    "message": "Exception when validating inner node",
                    "details": str(ex),
                    "extra_info": {
                        "input_name": x,
                        "input_config": info,
                        "exception_message": str(ex),
                        "exception_type": exception_type,
                        "traceback": traceback.format_tb(tb),
                        "linked_node": val
                    }
                }]
                validated[o_id] = (False, reasons, o_id)
                continue
        else:
            try:
                if type_input == "INT":
                    val = int(val)
                    inputs[x] = val
                if type_input == "FLOAT":
                    val = float(val)
                    inputs[x] = val
                if type_input == "STRING":
                    val = str(val)
                    inputs[x] = val
                if type_input == "BOOLEAN":
                    val = bool(val)
                    inputs[x] = val
            except Exception as ex:
                error = {
                    "type": "invalid_input_type",
                    "message": f"Failed to convert an input value to a {type_input} value",
                    "details": f"{x}, {val}, {ex}",
                    "extra_info": {
                        "input_name": x,
                        "input_config": info,
                        "received_value": val,
                        "exception_message": str(ex)
                    }
                }
                errors.append(error)
                continue

            if x not in validate_function_inputs and not validate_has_kwargs:
                if "min" in extra_info and val < extra_info["min"]:
                    error = {
                        "type": "value_smaller_than_min",
                        "message": "Value {} smaller than min of {}".format(val, extra_info["min"]),
                        "details": f"{x}",
                        "extra_info": {
                            "input_name": x,
                            "input_config": info,
                            "received_value": val,
                        }
                    }
                    errors.append(error)
                    continue
                if "max" in extra_info and val > extra_info["max"]:
                    error = {
                        "type": "value_bigger_than_max",
                        "message": "Value {} bigger than max of {}".format(val, extra_info["max"]),
                        "details": f"{x}",
                        "extra_info": {
                            "input_name": x,
                            "input_config": info,
                            "received_value": val,
                        }
                    }
                    errors.append(error)
                    continue

                if isinstance(type_input, list):
                    if val not in type_input:
                        input_config = info
                        list_info = ""

                        # Don't send back gigantic lists like if they're lots of
                        # scanned model filepaths
                        if len(type_input) > 20:
                            list_info = f"(list of length {len(type_input)})"
                            input_config = None
                        else:
                            list_info = str(type_input)

                        error = {
                            "type": "value_not_in_list",
                            "message": "Value not in list",
                            "details": f"{x}: '{val}' not in {list_info}",
                            "extra_info": {
                                "input_name": x,
                                "input_config": input_config,
                                "received_value": val,
                            }
                        }
                        errors.append(error)
                        continue

    if len(validate_function_inputs) > 0 or validate_has_kwargs:
        input_data_all, _ = get_input_data(inputs, obj_class, unique_id)
        input_filtered = {}
        for x in input_data_all:
            if x in validate_function_inputs or validate_has_kwargs:
                input_filtered[x] = input_data_all[x]
        if 'input_types' in validate_function_inputs:
            input_filtered['input_types'] = [received_types]

        #ret = obj_class.VALIDATE_INPUTS(**input_filtered)
        ret = _map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS")
        for x in input_filtered:
            for i, r in enumerate(ret):
                if r is not True and not isinstance(r, ExecutionBlocker):
                    details = f"{x}"
                    if r is not False:
                        details += f" - {str(r)}"

                    error = {
                        "type": "custom_validation_failed",
                        "message": "Custom validation failed for node",
                        "details": details,
                        "extra_info": {
                            "input_name": x,
                        }
                    }
                    errors.append(error)
                    continue

    if len(errors) > 0 or valid is not True:
        ret = (False, errors, unique_id)
    else:
        ret = (True, [], unique_id)

    validated[unique_id] = ret
    return ret

def full_type_name(klass):
    module = klass.__module__
    if module == 'builtins':
        return klass.__qualname__
    return module + '.' + klass.__qualname__

def validate_prompt(prompt):
    outputs = set()
    for x in prompt:
        if 'class_type' not in prompt[x]:
            error = {
                "type": "invalid_prompt",
                "message": f"Cannot execute because a node is missing the class_type property.",
                "details": f"Node ID '#{x}'",
                "extra_info": {}
            }
            return (False, error, [], [])

        class_type = prompt[x]['class_type']
        class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
        if class_ is None:
            error = {
                "type": "invalid_prompt",
                "message": f"Cannot execute because node {class_type} does not exist.",
                "details": f"Node ID '#{x}'",
                "extra_info": {}
            }
            return (False, error, [], [])

        if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
            outputs.add(x)

    if len(outputs) == 0:
        error = {
            "type": "prompt_no_outputs",
            "message": "Prompt has no outputs",
            "details": "",
            "extra_info": {}
        }
        return (False, error, [], [])

    good_outputs = set()
    errors = []
    node_errors = {}
    validated = {}
    for o in outputs:
        valid = False
        reasons = []
        try:
            m = validate_inputs(prompt, o, validated)
            valid = m[0]
            reasons = m[1]
        except Exception as ex:
            typ, _, tb = sys.exc_info()
            valid = False
            exception_type = full_type_name(typ)
            reasons = [{
                "type": "exception_during_validation",
                "message": "Exception when validating node",
                "details": str(ex),
                "extra_info": {
                    "exception_type": exception_type,
                    "traceback": traceback.format_tb(tb)
                }
            }]
            validated[o] = (False, reasons, o)

        if valid is True:
            good_outputs.add(o)
        else:
            logging.error(f"Failed to validate prompt for output {o}:")
            if len(reasons) > 0:
                logging.error("* (prompt):")
                for reason in reasons:
                    logging.error(f"  - {reason['message']}: {reason['details']}")
            errors += [(o, reasons)]
            for node_id, result in validated.items():
                valid = result[0]
                reasons = result[1]
                # If a node upstream has errors, the nodes downstream will also
                # be reported as invalid, but there will be no errors attached.
                # So don't return those nodes as having errors in the response.
                if valid is not True and len(reasons) > 0:
                    if node_id not in node_errors:
                        class_type = prompt[node_id]['class_type']
                        node_errors[node_id] = {
                            "errors": reasons,
                            "dependent_outputs": [],
                            "class_type": class_type
                        }
                        logging.error(f"* {class_type} {node_id}:")
                        for reason in reasons:
                            logging.error(f"  - {reason['message']}: {reason['details']}")
                    node_errors[node_id]["dependent_outputs"].append(o)
            logging.error("Output will be ignored")

    if len(good_outputs) == 0:
        errors_list = []
        for o, errors in errors:
            for error in errors:
                errors_list.append(f"{error['message']}: {error['details']}")
        errors_list = "\n".join(errors_list)

        error = {
            "type": "prompt_outputs_failed_validation",
            "message": "Prompt outputs failed validation",
            "details": errors_list,
            "extra_info": {}
        }

        return (False, error, list(good_outputs), node_errors)

    return (True, None, list(good_outputs), node_errors)

MAXIMUM_HISTORY_SIZE = 10000

class PromptQueue:
    def __init__(self, server):
        self.server = server
        self.mutex = threading.RLock()
        self.not_empty = threading.Condition(self.mutex)
        self.task_counter = 0
        self.queue = []
        self.currently_running = {}
        self.history = {}
        self.flags = {}
        server.prompt_queue = self

    def put(self, item):
        with self.mutex:
            heapq.heappush(self.queue, item)
            self.server.queue_updated()
            self.not_empty.notify()

    def get(self, timeout=None):
        with self.not_empty:
            while len(self.queue) == 0:
                self.not_empty.wait(timeout=timeout)
                if timeout is not None and len(self.queue) == 0:
                    return None
            item = heapq.heappop(self.queue)
            i = self.task_counter
            self.currently_running[i] = copy.deepcopy(item)
            self.task_counter += 1
            self.server.queue_updated()
            return (item, i)

    class ExecutionStatus(NamedTuple):
        status_str: Literal['success', 'error']
        completed: bool
        messages: List[str]

    def task_done(self, item_id, history_result,
                  status: Optional['PromptQueue.ExecutionStatus']):
        with self.mutex:
            prompt = self.currently_running.pop(item_id)
            if len(self.history) > MAXIMUM_HISTORY_SIZE:
                self.history.pop(next(iter(self.history)))

            status_dict: Optional[dict] = None
            if status is not None:
                status_dict = copy.deepcopy(status._asdict())

            self.history[prompt[1]] = {
                "prompt": prompt,
                "outputs": {},
                'status': status_dict,
            }
            self.history[prompt[1]].update(history_result)
            self.server.queue_updated()

    def get_current_queue(self):
        with self.mutex:
            out = []
            for x in self.currently_running.values():
                out += [x]
            return (out, copy.deepcopy(self.queue))

    def get_tasks_remaining(self):
        with self.mutex:
            return len(self.queue) + len(self.currently_running)

    def wipe_queue(self):
        with self.mutex:
            self.queue = []
            self.server.queue_updated()

    def delete_queue_item(self, function):
        with self.mutex:
            for x in range(len(self.queue)):
                if function(self.queue[x]):
                    if len(self.queue) == 1:
                        self.wipe_queue()
                    else:
                        self.queue.pop(x)
                        heapq.heapify(self.queue)
                    self.server.queue_updated()
                    return True
        return False

    def get_history(self, prompt_id=None, max_items=None, offset=-1):
        with self.mutex:
            if prompt_id is None:
                out = {}
                i = 0
                if offset < 0 and max_items is not None:
                    offset = len(self.history) - max_items
                for k in self.history:
                    if i >= offset:
                        out[k] = self.history[k]
                        if max_items is not None and len(out) >= max_items:
                            break
                    i += 1
                return out
            elif prompt_id in self.history:
                return {prompt_id: copy.deepcopy(self.history[prompt_id])}
            else:
                return {}

    def wipe_history(self):
        with self.mutex:
            self.history = {}

    def delete_history_item(self, id_to_delete):
        with self.mutex:
            self.history.pop(id_to_delete, None)

    def set_flag(self, name, data):
        with self.mutex:
            self.flags[name] = data
            self.not_empty.notify()

    def get_flags(self, reset=True):
        with self.mutex:
            if reset:
                ret = self.flags
                self.flags = {}
                return ret
            else:
                return self.flags.copy()