Spaces:
ginipick
/
Running on Zero

File size: 38,226 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
#code taken from: https://github.com/wl-zhao/UniPC and modified

import torch
import torch.nn.functional as F
import math

from tqdm.auto import trange, tqdm


class NoiseScheduleVP:
    def __init__(
            self,
            schedule='discrete',
            betas=None,
            alphas_cumprod=None,
            continuous_beta_0=0.1,
            continuous_beta_1=20.,
        ):
        r"""Create a wrapper class for the forward SDE (VP type).

        ***
        Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
                We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
        ***

        The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
        We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
        Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:

            log_alpha_t = self.marginal_log_mean_coeff(t)
            sigma_t = self.marginal_std(t)
            lambda_t = self.marginal_lambda(t)

        Moreover, as lambda(t) is an invertible function, we also support its inverse function:

            t = self.inverse_lambda(lambda_t)

        ===============================================================

        We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).

        1. For discrete-time DPMs:

            For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
                t_i = (i + 1) / N
            e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
            We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.

            Args:
                betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
                alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)

            Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.

            **Important**:  Please pay special attention for the args for `alphas_cumprod`:
                The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
                    q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
                Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
                    alpha_{t_n} = \sqrt{\hat{alpha_n}},
                and
                    log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).


        2. For continuous-time DPMs:

            We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
            schedule are the default settings in DDPM and improved-DDPM:

            Args:
                beta_min: A `float` number. The smallest beta for the linear schedule.
                beta_max: A `float` number. The largest beta for the linear schedule.
                cosine_s: A `float` number. The hyperparameter in the cosine schedule.
                cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
                T: A `float` number. The ending time of the forward process.

        ===============================================================

        Args:
            schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
                    'linear' or 'cosine' for continuous-time DPMs.
        Returns:
            A wrapper object of the forward SDE (VP type).
        
        ===============================================================

        Example:

        # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
        >>> ns = NoiseScheduleVP('discrete', betas=betas)

        # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
        >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)

        # For continuous-time DPMs (VPSDE), linear schedule:
        >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)

        """

        if schedule not in ['discrete', 'linear', 'cosine']:
            raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))

        self.schedule = schedule
        if schedule == 'discrete':
            if betas is not None:
                log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
            else:
                assert alphas_cumprod is not None
                log_alphas = 0.5 * torch.log(alphas_cumprod)
            self.total_N = len(log_alphas)
            self.T = 1.
            self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
            self.log_alpha_array = log_alphas.reshape((1, -1,))
        else:
            self.total_N = 1000
            self.beta_0 = continuous_beta_0
            self.beta_1 = continuous_beta_1
            self.cosine_s = 0.008
            self.cosine_beta_max = 999.
            self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
            self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
            self.schedule = schedule
            if schedule == 'cosine':
                # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
                # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
                self.T = 0.9946
            else:
                self.T = 1.

    def marginal_log_mean_coeff(self, t):
        """
        Compute log(alpha_t) of a given continuous-time label t in [0, T].
        """
        if self.schedule == 'discrete':
            return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
        elif self.schedule == 'linear':
            return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
        elif self.schedule == 'cosine':
            log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
            log_alpha_t =  log_alpha_fn(t) - self.cosine_log_alpha_0
            return log_alpha_t

    def marginal_alpha(self, t):
        """
        Compute alpha_t of a given continuous-time label t in [0, T].
        """
        return torch.exp(self.marginal_log_mean_coeff(t))

    def marginal_std(self, t):
        """
        Compute sigma_t of a given continuous-time label t in [0, T].
        """
        return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))

    def marginal_lambda(self, t):
        """
        Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
        """
        log_mean_coeff = self.marginal_log_mean_coeff(t)
        log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
        return log_mean_coeff - log_std

    def inverse_lambda(self, lamb):
        """
        Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
        """
        if self.schedule == 'linear':
            tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
            Delta = self.beta_0**2 + tmp
            return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
        elif self.schedule == 'discrete':
            log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
            t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
            return t.reshape((-1,))
        else:
            log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
            t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
            t = t_fn(log_alpha)
            return t


def model_wrapper(
    model,
    noise_schedule,
    model_type="noise",
    model_kwargs={},
    guidance_type="uncond",
    condition=None,
    unconditional_condition=None,
    guidance_scale=1.,
    classifier_fn=None,
    classifier_kwargs={},
):
    """Create a wrapper function for the noise prediction model.

    DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
    firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.

    We support four types of the diffusion model by setting `model_type`:

        1. "noise": noise prediction model. (Trained by predicting noise).

        2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).

        3. "v": velocity prediction model. (Trained by predicting the velocity).
            The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].

            [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
                arXiv preprint arXiv:2202.00512 (2022).
            [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
                arXiv preprint arXiv:2210.02303 (2022).
    
        4. "score": marginal score function. (Trained by denoising score matching).
            Note that the score function and the noise prediction model follows a simple relationship:
            ```
                noise(x_t, t) = -sigma_t * score(x_t, t)
            ```

    We support three types of guided sampling by DPMs by setting `guidance_type`:
        1. "uncond": unconditional sampling by DPMs.
            The input `model` has the following format:
            ``
                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
            ``

        2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
            The input `model` has the following format:
            ``
                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
            `` 

            The input `classifier_fn` has the following format:
            ``
                classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
            ``

            [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
                in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.

        3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
            The input `model` has the following format:
            ``
                model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
            `` 
            And if cond == `unconditional_condition`, the model output is the unconditional DPM output.

            [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
                arXiv preprint arXiv:2207.12598 (2022).
        

    The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
    or continuous-time labels (i.e. epsilon to T).

    We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
    ``
        def model_fn(x, t_continuous) -> noise:
            t_input = get_model_input_time(t_continuous)
            return noise_pred(model, x, t_input, **model_kwargs)         
    ``
    where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.

    ===============================================================

    Args:
        model: A diffusion model with the corresponding format described above.
        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
        model_type: A `str`. The parameterization type of the diffusion model.
                    "noise" or "x_start" or "v" or "score".
        model_kwargs: A `dict`. A dict for the other inputs of the model function.
        guidance_type: A `str`. The type of the guidance for sampling.
                    "uncond" or "classifier" or "classifier-free".
        condition: A pytorch tensor. The condition for the guided sampling.
                    Only used for "classifier" or "classifier-free" guidance type.
        unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
                    Only used for "classifier-free" guidance type.
        guidance_scale: A `float`. The scale for the guided sampling.
        classifier_fn: A classifier function. Only used for the classifier guidance.
        classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
    Returns:
        A noise prediction model that accepts the noised data and the continuous time as the inputs.
    """

    def get_model_input_time(t_continuous):
        """
        Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
        For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
        For continuous-time DPMs, we just use `t_continuous`.
        """
        if noise_schedule.schedule == 'discrete':
            return (t_continuous - 1. / noise_schedule.total_N) * 1000.
        else:
            return t_continuous

    def noise_pred_fn(x, t_continuous, cond=None):
        if t_continuous.reshape((-1,)).shape[0] == 1:
            t_continuous = t_continuous.expand((x.shape[0]))
        t_input = get_model_input_time(t_continuous)
        output = model(x, t_input, **model_kwargs)
        if model_type == "noise":
            return output
        elif model_type == "x_start":
            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
            dims = x.dim()
            return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
        elif model_type == "v":
            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
            dims = x.dim()
            return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
        elif model_type == "score":
            sigma_t = noise_schedule.marginal_std(t_continuous)
            dims = x.dim()
            return -expand_dims(sigma_t, dims) * output

    def cond_grad_fn(x, t_input):
        """
        Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
        """
        with torch.enable_grad():
            x_in = x.detach().requires_grad_(True)
            log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
            return torch.autograd.grad(log_prob.sum(), x_in)[0]

    def model_fn(x, t_continuous):
        """
        The noise predicition model function that is used for DPM-Solver.
        """
        if t_continuous.reshape((-1,)).shape[0] == 1:
            t_continuous = t_continuous.expand((x.shape[0]))
        if guidance_type == "uncond":
            return noise_pred_fn(x, t_continuous)
        elif guidance_type == "classifier":
            assert classifier_fn is not None
            t_input = get_model_input_time(t_continuous)
            cond_grad = cond_grad_fn(x, t_input)
            sigma_t = noise_schedule.marginal_std(t_continuous)
            noise = noise_pred_fn(x, t_continuous)
            return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
        elif guidance_type == "classifier-free":
            if guidance_scale == 1. or unconditional_condition is None:
                return noise_pred_fn(x, t_continuous, cond=condition)
            else:
                x_in = torch.cat([x] * 2)
                t_in = torch.cat([t_continuous] * 2)
                c_in = torch.cat([unconditional_condition, condition])
                noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
                return noise_uncond + guidance_scale * (noise - noise_uncond)

    assert model_type in ["noise", "x_start", "v"]
    assert guidance_type in ["uncond", "classifier", "classifier-free"]
    return model_fn


class UniPC:
    def __init__(
        self,
        model_fn,
        noise_schedule,
        predict_x0=True,
        thresholding=False,
        max_val=1.,
        variant='bh1',
    ):
        """Construct a UniPC. 

        We support both data_prediction and noise_prediction.
        """
        self.model = model_fn
        self.noise_schedule = noise_schedule
        self.variant = variant
        self.predict_x0 = predict_x0
        self.thresholding = thresholding
        self.max_val = max_val

    def dynamic_thresholding_fn(self, x0, t=None):
        """
        The dynamic thresholding method. 
        """
        dims = x0.dim()
        p = self.dynamic_thresholding_ratio
        s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
        s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
        x0 = torch.clamp(x0, -s, s) / s
        return x0

    def noise_prediction_fn(self, x, t):
        """
        Return the noise prediction model.
        """
        return self.model(x, t)

    def data_prediction_fn(self, x, t):
        """
        Return the data prediction model (with thresholding).
        """
        noise = self.noise_prediction_fn(x, t)
        dims = x.dim()
        alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
        x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
        if self.thresholding:
            p = 0.995   # A hyperparameter in the paper of "Imagen" [1].
            s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
            s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
            x0 = torch.clamp(x0, -s, s) / s
        return x0

    def model_fn(self, x, t):
        """
        Convert the model to the noise prediction model or the data prediction model. 
        """
        if self.predict_x0:
            return self.data_prediction_fn(x, t)
        else:
            return self.noise_prediction_fn(x, t)

    def get_time_steps(self, skip_type, t_T, t_0, N, device):
        """Compute the intermediate time steps for sampling.
        """
        if skip_type == 'logSNR':
            lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
            lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
            logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
            return self.noise_schedule.inverse_lambda(logSNR_steps)
        elif skip_type == 'time_uniform':
            return torch.linspace(t_T, t_0, N + 1).to(device)
        elif skip_type == 'time_quadratic':
            t_order = 2
            t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
            return t
        else:
            raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))

    def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
        """
        Get the order of each step for sampling by the singlestep DPM-Solver.
        """
        if order == 3:
            K = steps // 3 + 1
            if steps % 3 == 0:
                orders = [3,] * (K - 2) + [2, 1]
            elif steps % 3 == 1:
                orders = [3,] * (K - 1) + [1]
            else:
                orders = [3,] * (K - 1) + [2]
        elif order == 2:
            if steps % 2 == 0:
                K = steps // 2
                orders = [2,] * K
            else:
                K = steps // 2 + 1
                orders = [2,] * (K - 1) + [1]
        elif order == 1:
            K = steps
            orders = [1,] * steps
        else:
            raise ValueError("'order' must be '1' or '2' or '3'.")
        if skip_type == 'logSNR':
            # To reproduce the results in DPM-Solver paper
            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
        else:
            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
        return timesteps_outer, orders

    def denoise_to_zero_fn(self, x, s):
        """
        Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. 
        """
        return self.data_prediction_fn(x, s)

    def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
        if len(t.shape) == 0:
            t = t.view(-1)
        if 'bh' in self.variant:
            return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
        else:
            assert self.variant == 'vary_coeff'
            return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)

    def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
        print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
        ns = self.noise_schedule
        assert order <= len(model_prev_list)

        # first compute rks
        t_prev_0 = t_prev_list[-1]
        lambda_prev_0 = ns.marginal_lambda(t_prev_0)
        lambda_t = ns.marginal_lambda(t)
        model_prev_0 = model_prev_list[-1]
        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
        log_alpha_t = ns.marginal_log_mean_coeff(t)
        alpha_t = torch.exp(log_alpha_t)

        h = lambda_t - lambda_prev_0

        rks = []
        D1s = []
        for i in range(1, order):
            t_prev_i = t_prev_list[-(i + 1)]
            model_prev_i = model_prev_list[-(i + 1)]
            lambda_prev_i = ns.marginal_lambda(t_prev_i)
            rk = (lambda_prev_i - lambda_prev_0) / h
            rks.append(rk)
            D1s.append((model_prev_i - model_prev_0) / rk)

        rks.append(1.)
        rks = torch.tensor(rks, device=x.device)

        K = len(rks)
        # build C matrix
        C = []

        col = torch.ones_like(rks)
        for k in range(1, K + 1):
            C.append(col)
            col = col * rks / (k + 1) 
        C = torch.stack(C, dim=1)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1) # (B, K)
            C_inv_p = torch.linalg.inv(C[:-1, :-1])
            A_p = C_inv_p

        if use_corrector:
            print('using corrector')
            C_inv = torch.linalg.inv(C)
            A_c = C_inv

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)
        h_phi_ks = []
        factorial_k = 1
        h_phi_k = h_phi_1
        for k in range(1, K + 2):
            h_phi_ks.append(h_phi_k)
            h_phi_k = h_phi_k / hh - 1 / factorial_k
            factorial_k *= (k + 1)

        model_t = None
        if self.predict_x0:
            x_t_ = (
                sigma_t / sigma_prev_0 * x
                - alpha_t * h_phi_1 * model_prev_0
            )
            # now predictor
            x_t = x_t_
            if len(D1s) > 0:
                # compute the residuals for predictor
                for k in range(K - 1):
                    x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
            # now corrector
            if use_corrector:
                model_t = self.model_fn(x_t, t)
                D1_t = (model_t - model_prev_0)
                x_t = x_t_
                k = 0
                for k in range(K - 1):
                    x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
                x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
        else:
            log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
            x_t_ = (
                (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
                - (sigma_t * h_phi_1) * model_prev_0
            )
            # now predictor
            x_t = x_t_
            if len(D1s) > 0:
                # compute the residuals for predictor
                for k in range(K - 1):
                    x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
            # now corrector
            if use_corrector:
                model_t = self.model_fn(x_t, t)
                D1_t = (model_t - model_prev_0)
                x_t = x_t_
                k = 0
                for k in range(K - 1):
                    x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
                x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
        return x_t, model_t

    def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
        # print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
        ns = self.noise_schedule
        assert order <= len(model_prev_list)
        dims = x.dim()

        # first compute rks
        t_prev_0 = t_prev_list[-1]
        lambda_prev_0 = ns.marginal_lambda(t_prev_0)
        lambda_t = ns.marginal_lambda(t)
        model_prev_0 = model_prev_list[-1]
        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
        alpha_t = torch.exp(log_alpha_t)

        h = lambda_t - lambda_prev_0

        rks = []
        D1s = []
        for i in range(1, order):
            t_prev_i = t_prev_list[-(i + 1)]
            model_prev_i = model_prev_list[-(i + 1)]
            lambda_prev_i = ns.marginal_lambda(t_prev_i)
            rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
            rks.append(rk)
            D1s.append((model_prev_i - model_prev_0) / rk)

        rks.append(1.)
        rks = torch.tensor(rks, device=x.device)

        R = []
        b = []

        hh = -h[0] if self.predict_x0 else h[0]
        h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.variant == 'bh1':
            B_h = hh
        elif self.variant == 'bh2':
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()
            
        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= (i + 1)
            h_phi_k = h_phi_k / hh - 1 / factorial_i 

        R = torch.stack(R)
        b = torch.tensor(b, device=x.device)

        # now predictor
        use_predictor = len(D1s) > 0 and x_t is None
        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1) # (B, K)
            if x_t is None:
                # for order 2, we use a simplified version
                if order == 2:
                    rhos_p = torch.tensor([0.5], device=b.device)
                else:
                    rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
        else:
            D1s = None

        if use_corrector:
            # print('using corrector')
            # for order 1, we use a simplified version
            if order == 1:
                rhos_c = torch.tensor([0.5], device=b.device)
            else:
                rhos_c = torch.linalg.solve(R, b)

        model_t = None
        if self.predict_x0:
            x_t_ = (
                expand_dims(sigma_t / sigma_prev_0, dims) * x
                - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
            )

            if x_t is None:
                if use_predictor:
                    pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
                else:
                    pred_res = 0
                x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res

            if use_corrector:
                model_t = self.model_fn(x_t, t)
                if D1s is not None:
                    corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
                else:
                    corr_res = 0
                D1_t = (model_t - model_prev_0)
                x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = (
                expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
                - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
            )
            if x_t is None:
                if use_predictor:
                    pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
                else:
                    pred_res = 0
                x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res

            if use_corrector:
                model_t = self.model_fn(x_t, t)
                if D1s is not None:
                    corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
                else:
                    corr_res = 0
                D1_t = (model_t - model_prev_0)
                x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
        return x_t, model_t


    def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
        method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
        atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
    ):
        # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
        # t_T = self.noise_schedule.T if t_start is None else t_start
        device = x.device
        steps = len(timesteps) - 1
        if method == 'multistep':
            assert steps >= order
            # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
            assert timesteps.shape[0] - 1 == steps
            # with torch.no_grad():
            for step_index in trange(steps, disable=disable_pbar):
                if step_index == 0:
                    vec_t = timesteps[0].expand((x.shape[0]))
                    model_prev_list = [self.model_fn(x, vec_t)]
                    t_prev_list = [vec_t]
                elif step_index < order:
                    init_order = step_index
                # Init the first `order` values by lower order multistep DPM-Solver.
                # for init_order in range(1, order):
                    vec_t = timesteps[init_order].expand(x.shape[0])
                    x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
                    if model_x is None:
                        model_x = self.model_fn(x, vec_t)
                    model_prev_list.append(model_x)
                    t_prev_list.append(vec_t)
                else:
                    extra_final_step = 0
                    if step_index == (steps - 1):
                        extra_final_step = 1
                    for step in range(step_index, step_index + 1 + extra_final_step):
                        vec_t = timesteps[step].expand(x.shape[0])
                        if lower_order_final:
                            step_order = min(order, steps + 1 - step)
                        else:
                            step_order = order
                        # print('this step order:', step_order)
                        if step == steps:
                            # print('do not run corrector at the last step')
                            use_corrector = False
                        else:
                            use_corrector = True
                        x, model_x =  self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
                        for i in range(order - 1):
                            t_prev_list[i] = t_prev_list[i + 1]
                            model_prev_list[i] = model_prev_list[i + 1]
                        t_prev_list[-1] = vec_t
                        # We do not need to evaluate the final model value.
                        if step < steps:
                            if model_x is None:
                                model_x = self.model_fn(x, vec_t)
                            model_prev_list[-1] = model_x
                if callback is not None:
                    callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
        else:
            raise NotImplementedError()
        # if denoise_to_zero:
        #     x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
        return x


#############################################################
# other utility functions
#############################################################

def interpolate_fn(x, xp, yp):
    """
    A piecewise linear function y = f(x), using xp and yp as keypoints.
    We implement f(x) in a differentiable way (i.e. applicable for autograd).
    The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)

    Args:
        x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
        xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
        yp: PyTorch tensor with shape [C, K].
    Returns:
        The function values f(x), with shape [N, C].
    """
    N, K = x.shape[0], xp.shape[1]
    all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
    sorted_all_x, x_indices = torch.sort(all_x, dim=2)
    x_idx = torch.argmin(x_indices, dim=2)
    cand_start_idx = x_idx - 1
    start_idx = torch.where(
        torch.eq(x_idx, 0),
        torch.tensor(1, device=x.device),
        torch.where(
            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
        ),
    )
    end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
    start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
    end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
    start_idx2 = torch.where(
        torch.eq(x_idx, 0),
        torch.tensor(0, device=x.device),
        torch.where(
            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
        ),
    )
    y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
    start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
    end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
    cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
    return cand


def expand_dims(v, dims):
    """
    Expand the tensor `v` to the dim `dims`.

    Args:
        `v`: a PyTorch tensor with shape [N].
        `dim`: a `int`.
    Returns:
        a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
    """
    return v[(...,) + (None,)*(dims - 1)]


class SigmaConvert:
    schedule = ""
    def marginal_log_mean_coeff(self, sigma):
        return 0.5 * torch.log(1 / ((sigma * sigma) + 1))

    def marginal_alpha(self, t):
        return torch.exp(self.marginal_log_mean_coeff(t))

    def marginal_std(self, t):
        return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))

    def marginal_lambda(self, t):
        """
        Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
        """
        log_mean_coeff = self.marginal_log_mean_coeff(t)
        log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
        return log_mean_coeff - log_std

def predict_eps_sigma(model, input, sigma_in, **kwargs):
    sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
    input = input * ((sigma ** 2 + 1.0) ** 0.5)
    return  (input - model(input, sigma_in, **kwargs)) / sigma


def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
        timesteps = sigmas.clone()
        if sigmas[-1] == 0:
            timesteps = sigmas[:]
            timesteps[-1] = 0.001
        else:
            timesteps = sigmas.clone()
        ns = SigmaConvert()

        noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
        model_type = "noise"

        model_fn = model_wrapper(
            lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
            ns,
            model_type=model_type,
            guidance_type="uncond",
            model_kwargs=extra_args,
        )

        order = min(3, len(timesteps) - 2)
        uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
        x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
        x /= ns.marginal_alpha(timesteps[-1])
        return x

def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
    return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')