File size: 10,985 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# FILM: Frame Interpolation for Large Motion
### [Website](https://film-net.github.io/) | [Paper](https://arxiv.org/pdf/2202.04901.pdf) | [Google AI Blog](https://ai.googleblog.com/2022/10/large-motion-frame-interpolation.html) | [Tensorflow Hub Colab](https://www.tensorflow.org/hub/tutorials/tf_hub_film_example) | [YouTube](https://www.youtube.com/watch?v=OAD-BieIjH4) <br>
The official Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone. <br>
[FILM: Frame Interpolation for Large Motion](https://arxiv.org/abs/2202.04901) <br />
[Fitsum Reda](https://fitsumreda.github.io/)<sup>1</sup>, [Janne Kontkanen](https://scholar.google.com/citations?user=MnXc4JQAAAAJ&hl=en)<sup>1</sup>, [Eric Tabellion](http://www.tabellion.org/et/)<sup>1</sup>, [Deqing Sun](https://deqings.github.io/)<sup>1</sup>, [Caroline Pantofaru](https://scholar.google.com/citations?user=vKAKE1gAAAAJ&hl=en)<sup>1</sup>, [Brian Curless](https://homes.cs.washington.edu/~curless/)<sup>1,2</sup><br />
<sup>1</sup>Google Research, <sup>2</sup>University of Washington<br />
In ECCV 2022.
![A sample 2 seconds moment.](https://github.com/googlestaging/frame-interpolation/blob/main/moment.gif)
FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.
## Web Demo
Integrated into [Hugging Face Spaces π€](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/johngoad/frame-interpolation)
Try the interpolation model with the replicate web demo at
[![Replicate](https://replicate.com/google-research/frame-interpolation/badge)](https://replicate.com/google-research/frame-interpolation)
Try FILM to interpolate between two or more images with the PyTTI-Tools at [![PyTTI-Tools:FILM](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.sandbox.google.com/github/pytti-tools/frame-interpolation/blob/main/PyTTI_Tools_FiLM-colab.ipynb#scrollTo=-7TD7YZJbsy_)
An alternative Colab for running FILM on arbitrarily more input images, not just on two images, [![FILM-Gdrive](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1NuaPPSvUhYafymUf2mEkvhnEtpD5oihs)
## Change Log
* **Nov 28, 2022**: Upgrade `eval.interpolator_cli` for **high resolution frame interpolation**. `--block_height` and `--block_width` determine the total number of patches (`block_height*block_width`) to subdivide the input images. By default, both arguments are set to 1, and so no subdivision will be done.
* **Mar 12, 2022**: Support for Windows, see [WINDOWS_INSTALLATION.md](https://github.com/google-research/frame-interpolation/blob/main/WINDOWS_INSTALLATION.md).
* **Mar 09, 2022**: Support for **high resolution frame interpolation**. Set `--block_height` and `--block_width` in `eval.interpolator_test` to extract patches from the inputs, and reconstruct the interpolated frame from the iteratively interpolated patches.
## Installation
* Get Frame Interpolation source codes
```
git clone https://github.com/google-research/frame-interpolation
cd frame-interpolation
```
* Optionally, pull the recommended Docker base image
```
docker pull gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
```
* If you do not use Docker, set up your NVIDIA GPU environment with:
* [Anaconda Python 3.9](https://www.anaconda.com/products/individual)
* [CUDA Toolkit 11.2.1](https://developer.nvidia.com/cuda-11.2.1-download-archive)
* [cuDNN 8.1.0](https://developer.nvidia.com/rdp/cudnn-download)
* Install frame interpolation dependencies
```
pip3 install -r requirements.txt
sudo apt-get install -y ffmpeg
```
### See [WINDOWS_INSTALLATION](https://github.com/google-research/frame-interpolation/blob/main/WINDOWS_INSTALLATION.md) for Windows Support
## Pre-trained Models
* Create a directory where you can keep large files. Ideally, not in this
directory.
```
mkdir -p <pretrained_models>
```
* Download pre-trained TF2 Saved Models from
[google drive](https://drive.google.com/drive/folders/1q8110-qp225asX3DQvZnfLfJPkCHmDpy?usp=sharing)
and put into `<pretrained_models>`.
The downloaded folder should have the following structure:
```
<pretrained_models>/
βββ film_net/
β βββ L1/
β βββ Style/
β βββ VGG/
βββ vgg/
β βββ imagenet-vgg-verydeep-19.mat
```
## Running the Codes
The following instructions run the interpolator on the photos provided in
'frame-interpolation/photos'.
### One mid-frame interpolation
To generate an intermediate photo from the input near-duplicate photos, simply run:
```
python3 -m eval.interpolator_test \
--frame1 photos/one.png \
--frame2 photos/two.png \
--model_path <pretrained_models>/film_net/Style/saved_model \
--output_frame photos/output_middle.png
```
This will produce the sub-frame at `t=0.5` and save as 'photos/output_middle.png'.
### Many in-between frames interpolation
It takes in a set of directories identified by a glob (--pattern). Each directory
is expected to contain at least two input frames, with each contiguous frame
pair treated as an input to generate in-between frames. Frames should be named such that when sorted (naturally) with `natsort`, their desired order is unchanged.
```
python3 -m eval.interpolator_cli \
--pattern "photos" \
--model_path <pretrained_models>/film_net/Style/saved_model \
--times_to_interpolate 6 \
--output_video
```
You will find the interpolated frames (including the input frames) in
'photos/interpolated_frames/', and the interpolated video at
'photos/interpolated.mp4'.
The number of frames is determined by `--times_to_interpolate`, which controls
the number of times the frame interpolator is invoked. When the number of frames
in a directory is `num_frames`, the number of output frames will be
`(2^times_to_interpolate+1)*(num_frames-1)`.
## Datasets
We use [Vimeo-90K](http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip) as
our main training dataset. For quantitative evaluations, we rely on commonly
used benchmark datasets, specifically:
* [Vimeo-90K](http://data.csail.mit.edu/tofu/testset/vimeo_interp_test.zip)
* [Middlebury-Other](https://vision.middlebury.edu/flow/data)
* [UCF101](https://people.cs.umass.edu/~hzjiang/projects/superslomo/UCF101_results.zip)
* [Xiph](https://github.com/sniklaus/softmax-splatting/blob/master/benchmark.py)
### Creating a TFRecord
The training and benchmark evaluation scripts expect the frame triplets in the
[TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) storage format. <br />
We have included scripts that encode the relevant frame triplets into a
[tf.train.Example](https://www.tensorflow.org/api_docs/python/tf/train/Example)
data format, and export to a TFRecord file. <br />
You can use the commands `python3 -m
datasets.create_<dataset_name>_tfrecord --help` for more information.
For example, run the command below to create a TFRecord for the Middlebury-other
dataset. Download the [images](https://vision.middlebury.edu/flow/data) and point `--input_dir` to the unzipped folder path.
```
python3 -m datasets.create_middlebury_tfrecord \
--input_dir=<root folder of middlebury-other> \
--output_tfrecord_filepath=<output tfrecord filepath> \
--num_shards=3
```
The above command will output a TFRecord file with 3 shards as `<output tfrecord filepath>@3`.
## Training
Below are our training gin configuration files for the different loss function:
```
training/
βββ config/
β βββ film_net-L1.gin
β βββ film_net-VGG.gin
β βββ film_net-Style.gin
```
To launch a training, simply pass the configuration filepath to the desired
experiment. <br />
By default, it uses all visible GPUs for training. To debug or train
on a CPU, append `--mode cpu`.
```
python3 -m training.train \
--gin_config training/config/<config filename>.gin \
--base_folder <base folder for all training runs> \
--label <descriptive label for the run>
```
* When training finishes, the folder structure will look like this:
```
<base_folder>/
βββ <label>/
β βββ config.gin
β βββ eval/
β βββ train/
β βββ saved_model/
```
### Build a SavedModel
Optionally, to build a
[SavedModel](https://www.tensorflow.org/guide/saved_model) format from a trained
checkpoints folder, you can use this command:
```
python3 -m training.build_saved_model_cli \
--base_folder <base folder of training sessions> \
--label <the name of the run>
```
* By default, a SavedModel is created when the training loop ends, and it will be saved at
`<base_folder>/<label>/saved_model`.
## Evaluation on Benchmarks
Below, we provided the evaluation gin configuration files for the benchmarks we
have considered:
```
eval/
βββ config/
β βββ middlebury.gin
β βββ ucf101.gin
β βββ vimeo_90K.gin
β βββ xiph_2K.gin
β βββ xiph_4K.gin
```
To run an evaluation, simply pass the configuration file of the desired evaluation dataset. <br />
If a GPU is visible, it runs on it.
```
python3 -m eval.eval_cli \
--gin_config eval/config/<eval_dataset>.gin \
--model_path <pretrained_models>/film_net/L1/saved_model
```
The above command will produce the PSNR and SSIM scores presented in the paper.
## Citation
If you find this implementation useful in your works, please acknowledge it
appropriately by citing:
```
@inproceedings{reda2022film,
title = {FILM: Frame Interpolation for Large Motion},
author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2022}
}
```
```
@misc{film-tf,
title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Motion"},
author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}
```
## Acknowledgments
We would like to thank Richard Tucker, Jason Lai and David Minnen. We would also
like to thank Jamie Aspinall for the imagery included in this repository.
## Coding style
* 2 spaces for indentation
* 80 character line length
* PEP8 formatting
## Disclaimer
This is not an officially supported Google product.
|