Spaces:
ginipick
/
Running on Zero

File size: 1,465 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch

class InstructPixToPixConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/instructpix2pix"

    def encode(self, positive, negative, pixels, vae):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8

        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]

        concat_latent = vae.encode(pixels)

        out_latent = {}
        out_latent["samples"] = torch.zeros_like(concat_latent)

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()
                d["concat_latent_image"] = concat_latent
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1], out_latent)

NODE_CLASS_MAPPINGS = {
    "InstructPixToPixConditioning": InstructPixToPixConditioning,
}