Spaces:
ginipick
/
Running on Zero

File size: 9,172 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
#modified to support different types of flux controlnets

import torch
import math
from torch import Tensor, nn
from einops import rearrange, repeat

from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
                                 MLPEmbedder, SingleStreamBlock,
                                 timestep_embedding)

from .model import Flux
import comfy.ldm.common_dit

class MistolineCondDownsamplBlock(nn.Module):
    def __init__(self, dtype=None, device=None, operations=None):
        super().__init__()
        self.encoder = nn.Sequential(
            operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
        )

    def forward(self, x):
        return self.encoder(x)

class MistolineControlnetBlock(nn.Module):
    def __init__(self, hidden_size, dtype=None, device=None, operations=None):
        super().__init__()
        self.linear = operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device)
        self.act = nn.SiLU()

    def forward(self, x):
        return self.act(self.linear(x))


class ControlNetFlux(Flux):
    def __init__(self, latent_input=False, num_union_modes=0, mistoline=False, control_latent_channels=None, image_model=None, dtype=None, device=None, operations=None, **kwargs):
        super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)

        self.main_model_double = 19
        self.main_model_single = 38

        self.mistoline = mistoline
        # add ControlNet blocks
        if self.mistoline:
            control_block = lambda : MistolineControlnetBlock(self.hidden_size, dtype=dtype, device=device, operations=operations)
        else:
            control_block = lambda : operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)

        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(self.params.depth):
            self.controlnet_blocks.append(control_block())

        self.controlnet_single_blocks = nn.ModuleList([])
        for _ in range(self.params.depth_single_blocks):
            self.controlnet_single_blocks.append(control_block())

        self.num_union_modes = num_union_modes
        self.controlnet_mode_embedder = None
        if self.num_union_modes > 0:
            self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)

        self.gradient_checkpointing = False
        self.latent_input = latent_input
        if control_latent_channels is None:
            control_latent_channels = self.in_channels
        else:
            control_latent_channels *= 2 * 2 #patch size

        self.pos_embed_input = operations.Linear(control_latent_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
        if not self.latent_input:
            if self.mistoline:
                self.input_cond_block = MistolineCondDownsamplBlock(dtype=dtype, device=device, operations=operations)
            else:
                self.input_hint_block = nn.Sequential(
                    operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                    nn.SiLU(),
                    operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
                )

    def forward_orig(
        self,
        img: Tensor,
        img_ids: Tensor,
        controlnet_cond: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        guidance: Tensor = None,
        control_type: Tensor = None,
    ) -> Tensor:
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)

        controlnet_cond = self.pos_embed_input(controlnet_cond)
        img = img + controlnet_cond
        vec = self.time_in(timestep_embedding(timesteps, 256))
        if self.params.guidance_embed:
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)

        if self.controlnet_mode_embedder is not None and len(control_type) > 0:
            control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
            txt = torch.cat([control_cond, txt], dim=1)
            txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        pe = self.pe_embedder(ids)

        controlnet_double = ()

        for i in range(len(self.double_blocks)):
            img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
            controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)

        img = torch.cat((txt, img), 1)

        controlnet_single = ()

        for i in range(len(self.single_blocks)):
            img = self.single_blocks[i](img, vec=vec, pe=pe)
            controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)

        repeat = math.ceil(self.main_model_double / len(controlnet_double))
        if self.latent_input:
            out_input = ()
            for x in controlnet_double:
                    out_input += (x,) * repeat
        else:
            out_input = (controlnet_double * repeat)

        out = {"input": out_input[:self.main_model_double]}
        if len(controlnet_single) > 0:
            repeat = math.ceil(self.main_model_single / len(controlnet_single))
            out_output = ()
            if self.latent_input:
                for x in controlnet_single:
                        out_output += (x,) * repeat
            else:
                out_output = (controlnet_single * repeat)
            out["output"] = out_output[:self.main_model_single]
        return out

    def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
        patch_size = 2
        if self.latent_input:
            hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
        elif self.mistoline:
            hint = hint * 2.0 - 1.0
            hint = self.input_cond_block(hint)
        else:
            hint = hint * 2.0 - 1.0
            hint = self.input_hint_block(hint)

        hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        bs, c, h, w = x.shape
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = ((h + (patch_size // 2)) // patch_size)
        w_len = ((w + (patch_size // 2)) // patch_size)
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
        img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))