File size: 11,560 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import nodes
from comfy_execution.graph_utils import is_link
class DependencyCycleError(Exception):
pass
class NodeInputError(Exception):
pass
class NodeNotFoundError(Exception):
pass
class DynamicPrompt:
def __init__(self, original_prompt):
# The original prompt provided by the user
self.original_prompt = original_prompt
# Any extra pieces of the graph created during execution
self.ephemeral_prompt = {}
self.ephemeral_parents = {}
self.ephemeral_display = {}
def get_node(self, node_id):
if node_id in self.ephemeral_prompt:
return self.ephemeral_prompt[node_id]
if node_id in self.original_prompt:
return self.original_prompt[node_id]
raise NodeNotFoundError(f"Node {node_id} not found")
def has_node(self, node_id):
return node_id in self.original_prompt or node_id in self.ephemeral_prompt
def add_ephemeral_node(self, node_id, node_info, parent_id, display_id):
self.ephemeral_prompt[node_id] = node_info
self.ephemeral_parents[node_id] = parent_id
self.ephemeral_display[node_id] = display_id
def get_real_node_id(self, node_id):
while node_id in self.ephemeral_parents:
node_id = self.ephemeral_parents[node_id]
return node_id
def get_parent_node_id(self, node_id):
return self.ephemeral_parents.get(node_id, None)
def get_display_node_id(self, node_id):
while node_id in self.ephemeral_display:
node_id = self.ephemeral_display[node_id]
return node_id
def all_node_ids(self):
return set(self.original_prompt.keys()).union(set(self.ephemeral_prompt.keys()))
def get_original_prompt(self):
return self.original_prompt
def get_input_info(class_def, input_name):
valid_inputs = class_def.INPUT_TYPES()
input_info = None
input_category = None
if "required" in valid_inputs and input_name in valid_inputs["required"]:
input_category = "required"
input_info = valid_inputs["required"][input_name]
elif "optional" in valid_inputs and input_name in valid_inputs["optional"]:
input_category = "optional"
input_info = valid_inputs["optional"][input_name]
elif "hidden" in valid_inputs and input_name in valid_inputs["hidden"]:
input_category = "hidden"
input_info = valid_inputs["hidden"][input_name]
if input_info is None:
return None, None, None
input_type = input_info[0]
if len(input_info) > 1:
extra_info = input_info[1]
else:
extra_info = {}
return input_type, input_category, extra_info
class TopologicalSort:
def __init__(self, dynprompt):
self.dynprompt = dynprompt
self.pendingNodes = {}
self.blockCount = {} # Number of nodes this node is directly blocked by
self.blocking = {} # Which nodes are blocked by this node
def get_input_info(self, unique_id, input_name):
class_type = self.dynprompt.get_node(unique_id)["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
return get_input_info(class_def, input_name)
def make_input_strong_link(self, to_node_id, to_input):
inputs = self.dynprompt.get_node(to_node_id)["inputs"]
if to_input not in inputs:
raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but there is no input to that node at all")
value = inputs[to_input]
if not is_link(value):
raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but that value is a constant")
from_node_id, from_socket = value
self.add_strong_link(from_node_id, from_socket, to_node_id)
def add_strong_link(self, from_node_id, from_socket, to_node_id):
if not self.is_cached(from_node_id):
self.add_node(from_node_id)
if to_node_id not in self.blocking[from_node_id]:
self.blocking[from_node_id][to_node_id] = {}
self.blockCount[to_node_id] += 1
self.blocking[from_node_id][to_node_id][from_socket] = True
def add_node(self, node_unique_id, include_lazy=False, subgraph_nodes=None):
node_ids = [node_unique_id]
links = []
while len(node_ids) > 0:
unique_id = node_ids.pop()
if unique_id in self.pendingNodes:
continue
self.pendingNodes[unique_id] = True
self.blockCount[unique_id] = 0
self.blocking[unique_id] = {}
inputs = self.dynprompt.get_node(unique_id)["inputs"]
for input_name in inputs:
value = inputs[input_name]
if is_link(value):
from_node_id, from_socket = value
if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
continue
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
if (include_lazy or not is_lazy) and not self.is_cached(from_node_id):
node_ids.append(from_node_id)
links.append((from_node_id, from_socket, unique_id))
for link in links:
self.add_strong_link(*link)
def is_cached(self, node_id):
return False
def get_ready_nodes(self):
return [node_id for node_id in self.pendingNodes if self.blockCount[node_id] == 0]
def pop_node(self, unique_id):
del self.pendingNodes[unique_id]
for blocked_node_id in self.blocking[unique_id]:
self.blockCount[blocked_node_id] -= 1
del self.blocking[unique_id]
def is_empty(self):
return len(self.pendingNodes) == 0
class ExecutionList(TopologicalSort):
"""
ExecutionList implements a topological dissolve of the graph. After a node is staged for execution,
it can still be returned to the graph after having further dependencies added.
"""
def __init__(self, dynprompt, output_cache):
super().__init__(dynprompt)
self.output_cache = output_cache
self.staged_node_id = None
def is_cached(self, node_id):
return self.output_cache.get(node_id) is not None
def stage_node_execution(self):
assert self.staged_node_id is None
if self.is_empty():
return None, None, None
available = self.get_ready_nodes()
if len(available) == 0:
cycled_nodes = self.get_nodes_in_cycle()
# Because cycles composed entirely of static nodes are caught during initial validation,
# we will 'blame' the first node in the cycle that is not a static node.
blamed_node = cycled_nodes[0]
for node_id in cycled_nodes:
display_node_id = self.dynprompt.get_display_node_id(node_id)
if display_node_id != node_id:
blamed_node = display_node_id
break
ex = DependencyCycleError("Dependency cycle detected")
error_details = {
"node_id": blamed_node,
"exception_message": str(ex),
"exception_type": "graph.DependencyCycleError",
"traceback": [],
"current_inputs": []
}
return None, error_details, ex
self.staged_node_id = self.ux_friendly_pick_node(available)
return self.staged_node_id, None, None
def ux_friendly_pick_node(self, node_list):
# If an output node is available, do that first.
# Technically this has no effect on the overall length of execution, but it feels better as a user
# for a PreviewImage to display a result as soon as it can
# Some other heuristics could probably be used here to improve the UX further.
def is_output(node_id):
class_type = self.dynprompt.get_node(node_id)["class_type"]
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
return True
return False
for node_id in node_list:
if is_output(node_id):
return node_id
#This should handle the VAEDecode -> preview case
for node_id in node_list:
for blocked_node_id in self.blocking[node_id]:
if is_output(blocked_node_id):
return node_id
#This should handle the VAELoader -> VAEDecode -> preview case
for node_id in node_list:
for blocked_node_id in self.blocking[node_id]:
for blocked_node_id1 in self.blocking[blocked_node_id]:
if is_output(blocked_node_id1):
return node_id
#TODO: this function should be improved
return node_list[0]
def unstage_node_execution(self):
assert self.staged_node_id is not None
self.staged_node_id = None
def complete_node_execution(self):
node_id = self.staged_node_id
self.pop_node(node_id)
self.staged_node_id = None
def get_nodes_in_cycle(self):
# We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle.
# We're skipping some of the performance optimizations from the original TopologicalSort to keep
# the code simple (and because having a cycle in the first place is a catastrophic error)
blocked_by = { node_id: {} for node_id in self.pendingNodes }
for from_node_id in self.blocking:
for to_node_id in self.blocking[from_node_id]:
if True in self.blocking[from_node_id][to_node_id].values():
blocked_by[to_node_id][from_node_id] = True
to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0]
while len(to_remove) > 0:
for node_id in to_remove:
for to_node_id in blocked_by:
if node_id in blocked_by[to_node_id]:
del blocked_by[to_node_id][node_id]
del blocked_by[node_id]
to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0]
return list(blocked_by.keys())
class ExecutionBlocker:
"""
Return this from a node and any users will be blocked with the given error message.
If the message is None, execution will be blocked silently instead.
Generally, you should avoid using this functionality unless absolutely necessary. Whenever it's
possible, a lazy input will be more efficient and have a better user experience.
This functionality is useful in two cases:
1. You want to conditionally prevent an output node from executing. (Particularly a built-in node
like SaveImage. For your own output nodes, I would recommend just adding a BOOL input and using
lazy evaluation to let it conditionally disable itself.)
2. You have a node with multiple possible outputs, some of which are invalid and should not be used.
(I would recommend not making nodes like this in the future -- instead, make multiple nodes with
different outputs. Unfortunately, there are several popular existing nodes using this pattern.)
"""
def __init__(self, message):
self.message = message
|