Spaces:
ginipick
/
Running on Zero

File size: 8,953 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from bisect import bisect_right
from typing import List
import torch
from fvcore.common.param_scheduler import (
    CompositeParamScheduler,
    ConstantParamScheduler,
    LinearParamScheduler,
    ParamScheduler,
)

try:
    from torch.optim.lr_scheduler import LRScheduler
except ImportError:
    from torch.optim.lr_scheduler import _LRScheduler as LRScheduler

logger = logging.getLogger(__name__)


class WarmupParamScheduler(CompositeParamScheduler):
    """
    Add an initial warmup stage to another scheduler.
    """

    def __init__(
        self,
        scheduler: ParamScheduler,
        warmup_factor: float,
        warmup_length: float,
        warmup_method: str = "linear",
        rescale_interval: bool = False,
    ):
        """
        Args:
            scheduler: warmup will be added at the beginning of this scheduler
            warmup_factor: the factor w.r.t the initial value of ``scheduler``, e.g. 0.001
            warmup_length: the relative length (in [0, 1]) of warmup steps w.r.t the entire
                training, e.g. 0.01
            warmup_method: one of "linear" or "constant"
            rescale_interval: whether we will rescale the interval of the scheduler after
                warmup
        """
        # the value to reach when warmup ends
        end_value = scheduler(0.0) if rescale_interval else scheduler(warmup_length)
        start_value = warmup_factor * scheduler(0.0)
        if warmup_method == "constant":
            warmup = ConstantParamScheduler(start_value)
        elif warmup_method == "linear":
            warmup = LinearParamScheduler(start_value, end_value)
        else:
            raise ValueError("Unknown warmup method: {}".format(warmup_method))
        super().__init__(
            [warmup, scheduler],
            interval_scaling=["rescaled", "rescaled" if rescale_interval else "fixed"],
            lengths=[warmup_length, 1 - warmup_length],
        )


class LRMultiplier(LRScheduler):
    """
    A LRScheduler which uses fvcore :class:`ParamScheduler` to multiply the
    learning rate of each param in the optimizer.
    Every step, the learning rate of each parameter becomes its initial value
    multiplied by the output of the given :class:`ParamScheduler`.

    The absolute learning rate value of each parameter can be different.
    This scheduler can be used as long as the relative scale among them do
    not change during training.

    Examples:
    ::
        LRMultiplier(
            opt,
            WarmupParamScheduler(
                MultiStepParamScheduler(
                    [1, 0.1, 0.01],
                    milestones=[60000, 80000],
                    num_updates=90000,
                ), 0.001, 100 / 90000
            ),
            max_iter=90000
        )
    """

    # NOTES: in the most general case, every LR can use its own scheduler.
    # Supporting this requires interaction with the optimizer when its parameter
    # group is initialized. For example, classyvision implements its own optimizer
    # that allows different schedulers for every parameter group.
    # To avoid this complexity, we use this class to support the most common cases
    # where the relative scale among all LRs stay unchanged during training.  In this
    # case we only need a total of one scheduler that defines the relative LR multiplier.

    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        multiplier: ParamScheduler,
        max_iter: int,
        last_iter: int = -1,
    ):
        """
        Args:
            optimizer, last_iter: See ``torch.optim.lr_scheduler.LRScheduler``.
                ``last_iter`` is the same as ``last_epoch``.
            multiplier: a fvcore ParamScheduler that defines the multiplier on
                every LR of the optimizer
            max_iter: the total number of training iterations
        """
        if not isinstance(multiplier, ParamScheduler):
            raise ValueError(
                "_LRMultiplier(multiplier=) must be an instance of fvcore "
                f"ParamScheduler. Got {multiplier} instead."
            )
        self._multiplier = multiplier
        self._max_iter = max_iter
        super().__init__(optimizer, last_epoch=last_iter)

    def state_dict(self):
        # fvcore schedulers are stateless. Only keep pytorch scheduler states
        return {"base_lrs": self.base_lrs, "last_epoch": self.last_epoch}

    def get_lr(self) -> List[float]:
        multiplier = self._multiplier(self.last_epoch / self._max_iter)
        return [base_lr * multiplier for base_lr in self.base_lrs]


"""
Content below is no longer needed!
"""

# NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes
# only on epoch boundaries. We typically use iteration based schedules instead.
# As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean
# "iteration" instead.

# FIXME: ideally this would be achieved with a CombinedLRScheduler, separating
# MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it.


class WarmupMultiStepLR(LRScheduler):
    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        milestones: List[int],
        gamma: float = 0.1,
        warmup_factor: float = 0.001,
        warmup_iters: int = 1000,
        warmup_method: str = "linear",
        last_epoch: int = -1,
    ):
        logger.warning(
            "WarmupMultiStepLR is deprecated! Use LRMultipilier with fvcore ParamScheduler instead!"
        )
        if not list(milestones) == sorted(milestones):
            raise ValueError(
                "Milestones should be a list of" " increasing integers. Got {}", milestones
            )
        self.milestones = milestones
        self.gamma = gamma
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        super().__init__(optimizer, last_epoch)

    def get_lr(self) -> List[float]:
        warmup_factor = _get_warmup_factor_at_iter(
            self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
        )
        return [
            base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch)
            for base_lr in self.base_lrs
        ]

    def _compute_values(self) -> List[float]:
        # The new interface
        return self.get_lr()


class WarmupCosineLR(LRScheduler):
    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        max_iters: int,
        warmup_factor: float = 0.001,
        warmup_iters: int = 1000,
        warmup_method: str = "linear",
        last_epoch: int = -1,
    ):
        logger.warning(
            "WarmupCosineLR is deprecated! Use LRMultipilier with fvcore ParamScheduler instead!"
        )
        self.max_iters = max_iters
        self.warmup_factor = warmup_factor
        self.warmup_iters = warmup_iters
        self.warmup_method = warmup_method
        super().__init__(optimizer, last_epoch)

    def get_lr(self) -> List[float]:
        warmup_factor = _get_warmup_factor_at_iter(
            self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
        )
        # Different definitions of half-cosine with warmup are possible. For
        # simplicity we multiply the standard half-cosine schedule by the warmup
        # factor. An alternative is to start the period of the cosine at warmup_iters
        # instead of at 0. In the case that warmup_iters << max_iters the two are
        # very close to each other.
        return [
            base_lr
            * warmup_factor
            * 0.5
            * (1.0 + math.cos(math.pi * self.last_epoch / self.max_iters))
            for base_lr in self.base_lrs
        ]

    def _compute_values(self) -> List[float]:
        # The new interface
        return self.get_lr()


def _get_warmup_factor_at_iter(
    method: str, iter: int, warmup_iters: int, warmup_factor: float
) -> float:
    """
    Return the learning rate warmup factor at a specific iteration.
    See :paper:`ImageNet in 1h` for more details.

    Args:
        method (str): warmup method; either "constant" or "linear".
        iter (int): iteration at which to calculate the warmup factor.
        warmup_iters (int): the number of warmup iterations.
        warmup_factor (float): the base warmup factor (the meaning changes according
            to the method used).

    Returns:
        float: the effective warmup factor at the given iteration.
    """
    if iter >= warmup_iters:
        return 1.0

    if method == "constant":
        return warmup_factor
    elif method == "linear":
        alpha = iter / warmup_iters
        return warmup_factor * (1 - alpha) + alpha
    else:
        raise ValueError("Unknown warmup method: {}".format(method))