Spaces:
ginipick
/
Running on Zero

File size: 9,268 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
from typing import Any, Dict, Iterable, List, Optional
from fvcore.common.timer import Timer

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.lvis import get_lvis_instances_meta
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager

from ..utils import maybe_prepend_base_path
from .coco import (
    DENSEPOSE_ALL_POSSIBLE_KEYS,
    DENSEPOSE_METADATA_URL_PREFIX,
    CocoDatasetInfo,
    get_metadata,
)

DATASETS = [
    CocoDatasetInfo(
        name="densepose_lvis_v1_ds1_train_v1",
        images_root="coco_",
        annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json",
    ),
    CocoDatasetInfo(
        name="densepose_lvis_v1_ds1_val_v1",
        images_root="coco_",
        annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json",
    ),
    CocoDatasetInfo(
        name="densepose_lvis_v1_ds2_train_v1",
        images_root="coco_",
        annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json",
    ),
    CocoDatasetInfo(
        name="densepose_lvis_v1_ds2_val_v1",
        images_root="coco_",
        annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json",
    ),
    CocoDatasetInfo(
        name="densepose_lvis_v1_ds1_val_animals_100",
        images_root="coco_",
        annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json",
    ),
]


def _load_lvis_annotations(json_file: str):
    """
    Load COCO annotations from a JSON file

    Args:
        json_file: str
            Path to the file to load annotations from
    Returns:
        Instance of `pycocotools.coco.COCO` that provides access to annotations
        data
    """
    from lvis import LVIS

    json_file = PathManager.get_local_path(json_file)
    logger = logging.getLogger(__name__)
    timer = Timer()
    lvis_api = LVIS(json_file)
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
    return lvis_api


def _add_categories_metadata(dataset_name: str) -> None:
    metadict = get_lvis_instances_meta(dataset_name)
    categories = metadict["thing_classes"]
    metadata = MetadataCatalog.get(dataset_name)
    metadata.categories = {i + 1: categories[i] for i in range(len(categories))}
    logger = logging.getLogger(__name__)
    logger.info(f"Dataset {dataset_name} has {len(categories)} categories")


def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None:
    ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
    assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
        json_file
    )


def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
    if "bbox" not in ann_dict:
        return
    obj["bbox"] = ann_dict["bbox"]
    obj["bbox_mode"] = BoxMode.XYWH_ABS


def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
    if "segmentation" not in ann_dict:
        return
    segm = ann_dict["segmentation"]
    if not isinstance(segm, dict):
        # filter out invalid polygons (< 3 points)
        segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
        if len(segm) == 0:
            return
    obj["segmentation"] = segm


def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
    if "keypoints" not in ann_dict:
        return
    keypts = ann_dict["keypoints"]  # list[int]
    for idx, v in enumerate(keypts):
        if idx % 3 != 2:
            # COCO's segmentation coordinates are floating points in [0, H or W],
            # but keypoint coordinates are integers in [0, H-1 or W-1]
            # Therefore we assume the coordinates are "pixel indices" and
            # add 0.5 to convert to floating point coordinates.
            keypts[idx] = v + 0.5
    obj["keypoints"] = keypts


def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
    for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
        if key in ann_dict:
            obj[key] = ann_dict[key]


def _combine_images_with_annotations(
    dataset_name: str,
    image_root: str,
    img_datas: Iterable[Dict[str, Any]],
    ann_datas: Iterable[Iterable[Dict[str, Any]]],
):

    dataset_dicts = []

    def get_file_name(img_root, img_dict):
        # Determine the path including the split folder ("train2017", "val2017", "test2017") from
        # the coco_url field. Example:
        #   'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg'
        split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
        return os.path.join(img_root + split_folder, file_name)

    for img_dict, ann_dicts in zip(img_datas, ann_datas):
        record = {}
        record["file_name"] = get_file_name(image_root, img_dict)
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
        record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
        record["image_id"] = img_dict["id"]
        record["dataset"] = dataset_name

        objs = []
        for ann_dict in ann_dicts:
            assert ann_dict["image_id"] == record["image_id"]
            obj = {}
            _maybe_add_bbox(obj, ann_dict)
            obj["iscrowd"] = ann_dict.get("iscrowd", 0)
            obj["category_id"] = ann_dict["category_id"]
            _maybe_add_segm(obj, ann_dict)
            _maybe_add_keypoints(obj, ann_dict)
            _maybe_add_densepose(obj, ann_dict)
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)
    return dataset_dicts


def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str):
    """
    Loads a JSON file with annotations in LVIS instances format.
    Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata
    in a more flexible way. Postpones category mapping to a later stage to be
    able to combine several datasets with different (but coherent) sets of
    categories.

    Args:

    annotations_json_file: str
        Path to the JSON file with annotations in COCO instances format.
    image_root: str
        directory that contains all the images
    dataset_name: str
        the name that identifies a dataset, e.g. "densepose_coco_2014_train"
    extra_annotation_keys: Optional[List[str]]
        If provided, these keys are used to extract additional data from
        the annotations.
    """
    lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file))

    _add_categories_metadata(dataset_name)

    # sort indices for reproducible results
    img_ids = sorted(lvis_api.imgs.keys())
    # imgs is a list of dicts, each looks something like:
    # {'license': 4,
    #  'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
    #  'file_name': 'COCO_val2014_000000001268.jpg',
    #  'height': 427,
    #  'width': 640,
    #  'date_captured': '2013-11-17 05:57:24',
    #  'id': 1268}
    imgs = lvis_api.load_imgs(img_ids)
    logger = logging.getLogger(__name__)
    logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file))
    # anns is a list[list[dict]], where each dict is an annotation
    # record for an object. The inner list enumerates the objects in an image
    # and the outer list enumerates over images.
    anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]

    _verify_annotations_have_unique_ids(annotations_json_file, anns)
    dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
    return dataset_records


def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None:
    """
    Registers provided LVIS DensePose dataset

    Args:
        dataset_data: CocoDatasetInfo
            Dataset data
        datasets_root: Optional[str]
            Datasets root folder (default: None)
    """
    annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
    images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)

    def load_annotations():
        return load_lvis_json(
            annotations_json_file=annotations_fpath,
            image_root=images_root,
            dataset_name=dataset_data.name,
        )

    DatasetCatalog.register(dataset_data.name, load_annotations)
    MetadataCatalog.get(dataset_data.name).set(
        json_file=annotations_fpath,
        image_root=images_root,
        evaluator_type="lvis",
        **get_metadata(DENSEPOSE_METADATA_URL_PREFIX),
    )


def register_datasets(
    datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
) -> None:
    """
    Registers provided LVIS DensePose datasets

    Args:
        datasets_data: Iterable[CocoDatasetInfo]
            An iterable of dataset datas
        datasets_root: Optional[str]
            Datasets root folder (default: None)
    """
    for dataset_data in datasets_data:
        register_dataset(dataset_data, datasets_root)