Spaces:
ginipick
/
Running on Zero

File size: 10,174 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.


"""
This file registers pre-defined datasets at hard-coded paths, and their metadata.

We hard-code metadata for common datasets. This will enable:
1. Consistency check when loading the datasets
2. Use models on these standard datasets directly and run demos,
   without having to download the dataset annotations

We hard-code some paths to the dataset that's assumed to
exist in "./datasets/".

Users SHOULD NOT use this file to create new dataset / metadata for new dataset.
To add new dataset, refer to the tutorial "docs/DATASETS.md".
"""

import os

from detectron2.data import DatasetCatalog, MetadataCatalog

from .builtin_meta import ADE20K_SEM_SEG_CATEGORIES, _get_builtin_metadata
from .cityscapes import load_cityscapes_instances, load_cityscapes_semantic
from .cityscapes_panoptic import register_all_cityscapes_panoptic
from .coco import load_sem_seg, register_coco_instances
from .coco_panoptic import register_coco_panoptic, register_coco_panoptic_separated
from .lvis import get_lvis_instances_meta, register_lvis_instances
from .pascal_voc import register_pascal_voc

# ==== Predefined datasets and splits for COCO ==========

_PREDEFINED_SPLITS_COCO = {}
_PREDEFINED_SPLITS_COCO["coco"] = {
    "coco_2014_train": ("coco/train2014", "coco/annotations/instances_train2014.json"),
    "coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"),
    "coco_2014_minival": ("coco/val2014", "coco/annotations/instances_minival2014.json"),
    "coco_2014_valminusminival": (
        "coco/val2014",
        "coco/annotations/instances_valminusminival2014.json",
    ),
    "coco_2017_train": ("coco/train2017", "coco/annotations/instances_train2017.json"),
    "coco_2017_val": ("coco/val2017", "coco/annotations/instances_val2017.json"),
    "coco_2017_test": ("coco/test2017", "coco/annotations/image_info_test2017.json"),
    "coco_2017_test-dev": ("coco/test2017", "coco/annotations/image_info_test-dev2017.json"),
    "coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json"),
}

_PREDEFINED_SPLITS_COCO["coco_person"] = {
    "keypoints_coco_2014_train": (
        "coco/train2014",
        "coco/annotations/person_keypoints_train2014.json",
    ),
    "keypoints_coco_2014_val": ("coco/val2014", "coco/annotations/person_keypoints_val2014.json"),
    "keypoints_coco_2014_minival": (
        "coco/val2014",
        "coco/annotations/person_keypoints_minival2014.json",
    ),
    "keypoints_coco_2014_valminusminival": (
        "coco/val2014",
        "coco/annotations/person_keypoints_valminusminival2014.json",
    ),
    "keypoints_coco_2017_train": (
        "coco/train2017",
        "coco/annotations/person_keypoints_train2017.json",
    ),
    "keypoints_coco_2017_val": ("coco/val2017", "coco/annotations/person_keypoints_val2017.json"),
    "keypoints_coco_2017_val_100": (
        "coco/val2017",
        "coco/annotations/person_keypoints_val2017_100.json",
    ),
}


_PREDEFINED_SPLITS_COCO_PANOPTIC = {
    "coco_2017_train_panoptic": (
        # This is the original panoptic annotation directory
        "coco/panoptic_train2017",
        "coco/annotations/panoptic_train2017.json",
        # This directory contains semantic annotations that are
        # converted from panoptic annotations.
        # It is used by PanopticFPN.
        # You can use the script at detectron2/datasets/prepare_panoptic_fpn.py
        # to create these directories.
        "coco/panoptic_stuff_train2017",
    ),
    "coco_2017_val_panoptic": (
        "coco/panoptic_val2017",
        "coco/annotations/panoptic_val2017.json",
        "coco/panoptic_stuff_val2017",
    ),
    "coco_2017_val_100_panoptic": (
        "coco/panoptic_val2017_100",
        "coco/annotations/panoptic_val2017_100.json",
        "coco/panoptic_stuff_val2017_100",
    ),
}


def register_all_coco(root):
    for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items():
        for key, (image_root, json_file) in splits_per_dataset.items():
            # Assume pre-defined datasets live in `./datasets`.
            register_coco_instances(
                key,
                _get_builtin_metadata(dataset_name),
                os.path.join(root, json_file) if "://" not in json_file else json_file,
                os.path.join(root, image_root),
            )

    for (
        prefix,
        (panoptic_root, panoptic_json, semantic_root),
    ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items():
        prefix_instances = prefix[: -len("_panoptic")]
        instances_meta = MetadataCatalog.get(prefix_instances)
        image_root, instances_json = instances_meta.image_root, instances_meta.json_file
        # The "separated" version of COCO panoptic segmentation dataset,
        # e.g. used by Panoptic FPN
        register_coco_panoptic_separated(
            prefix,
            _get_builtin_metadata("coco_panoptic_separated"),
            image_root,
            os.path.join(root, panoptic_root),
            os.path.join(root, panoptic_json),
            os.path.join(root, semantic_root),
            instances_json,
        )
        # The "standard" version of COCO panoptic segmentation dataset,
        # e.g. used by Panoptic-DeepLab
        register_coco_panoptic(
            prefix,
            _get_builtin_metadata("coco_panoptic_standard"),
            image_root,
            os.path.join(root, panoptic_root),
            os.path.join(root, panoptic_json),
            instances_json,
        )


# ==== Predefined datasets and splits for LVIS ==========


_PREDEFINED_SPLITS_LVIS = {
    "lvis_v1": {
        "lvis_v1_train": ("coco/", "lvis/lvis_v1_train.json"),
        "lvis_v1_val": ("coco/", "lvis/lvis_v1_val.json"),
        "lvis_v1_test_dev": ("coco/", "lvis/lvis_v1_image_info_test_dev.json"),
        "lvis_v1_test_challenge": ("coco/", "lvis/lvis_v1_image_info_test_challenge.json"),
    },
    "lvis_v0.5": {
        "lvis_v0.5_train": ("coco/", "lvis/lvis_v0.5_train.json"),
        "lvis_v0.5_val": ("coco/", "lvis/lvis_v0.5_val.json"),
        "lvis_v0.5_val_rand_100": ("coco/", "lvis/lvis_v0.5_val_rand_100.json"),
        "lvis_v0.5_test": ("coco/", "lvis/lvis_v0.5_image_info_test.json"),
    },
    "lvis_v0.5_cocofied": {
        "lvis_v0.5_train_cocofied": ("coco/", "lvis/lvis_v0.5_train_cocofied.json"),
        "lvis_v0.5_val_cocofied": ("coco/", "lvis/lvis_v0.5_val_cocofied.json"),
    },
}


def register_all_lvis(root):
    for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items():
        for key, (image_root, json_file) in splits_per_dataset.items():
            register_lvis_instances(
                key,
                get_lvis_instances_meta(dataset_name),
                os.path.join(root, json_file) if "://" not in json_file else json_file,
                os.path.join(root, image_root),
            )


# ==== Predefined splits for raw cityscapes images ===========
_RAW_CITYSCAPES_SPLITS = {
    "cityscapes_fine_{task}_train": ("cityscapes/leftImg8bit/train/", "cityscapes/gtFine/train/"),
    "cityscapes_fine_{task}_val": ("cityscapes/leftImg8bit/val/", "cityscapes/gtFine/val/"),
    "cityscapes_fine_{task}_test": ("cityscapes/leftImg8bit/test/", "cityscapes/gtFine/test/"),
}


def register_all_cityscapes(root):
    for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items():
        meta = _get_builtin_metadata("cityscapes")
        image_dir = os.path.join(root, image_dir)
        gt_dir = os.path.join(root, gt_dir)

        inst_key = key.format(task="instance_seg")
        DatasetCatalog.register(
            inst_key,
            lambda x=image_dir, y=gt_dir: load_cityscapes_instances(
                x, y, from_json=True, to_polygons=True
            ),
        )
        MetadataCatalog.get(inst_key).set(
            image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta
        )

        sem_key = key.format(task="sem_seg")
        DatasetCatalog.register(
            sem_key, lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y)
        )
        MetadataCatalog.get(sem_key).set(
            image_dir=image_dir,
            gt_dir=gt_dir,
            evaluator_type="cityscapes_sem_seg",
            ignore_label=255,
            **meta,
        )


# ==== Predefined splits for PASCAL VOC ===========
def register_all_pascal_voc(root):
    SPLITS = [
        ("voc_2007_trainval", "VOC2007", "trainval"),
        ("voc_2007_train", "VOC2007", "train"),
        ("voc_2007_val", "VOC2007", "val"),
        ("voc_2007_test", "VOC2007", "test"),
        ("voc_2012_trainval", "VOC2012", "trainval"),
        ("voc_2012_train", "VOC2012", "train"),
        ("voc_2012_val", "VOC2012", "val"),
    ]
    for name, dirname, split in SPLITS:
        year = 2007 if "2007" in name else 2012
        register_pascal_voc(name, os.path.join(root, dirname), split, year)
        MetadataCatalog.get(name).evaluator_type = "pascal_voc"


def register_all_ade20k(root):
    root = os.path.join(root, "ADEChallengeData2016")
    for name, dirname in [("train", "training"), ("val", "validation")]:
        image_dir = os.path.join(root, "images", dirname)
        gt_dir = os.path.join(root, "annotations_detectron2", dirname)
        name = f"ade20k_sem_seg_{name}"
        DatasetCatalog.register(
            name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg")
        )
        MetadataCatalog.get(name).set(
            stuff_classes=ADE20K_SEM_SEG_CATEGORIES[:],
            image_root=image_dir,
            sem_seg_root=gt_dir,
            evaluator_type="sem_seg",
            ignore_label=255,
        )


# True for open source;
# Internally at fb, we register them elsewhere
if __name__.endswith(".builtin"):
    # Assume pre-defined datasets live in `./datasets`.
    _root = os.path.expanduser(os.getenv("DETECTRON2_DATASETS", "datasets"))
    register_all_coco(_root)
    register_all_lvis(_root)
    register_all_cityscapes(_root)
    register_all_cityscapes_panoptic(_root)
    register_all_pascal_voc(_root)
    register_all_ade20k(_root)