Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,249 Bytes
fe72a39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import numpy as np
import torch
from diffusers.utils import is_invisible_watermark_available
if is_invisible_watermark_available():
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class StableDiffusionXLWatermarker:
def __init__(self):
self.watermark = WATERMARK_BITS
self.encoder = WatermarkEncoder()
self.encoder.set_watermark("bits", self.watermark)
def apply_watermark(self, images: torch.FloatTensor):
# can't encode images that are smaller than 256
if images.shape[-1] < 256:
return images
images = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1).float().numpy()
images = [self.encoder.encode(image, "dwtDct") for image in images]
images = torch.from_numpy(np.array(images)).permute(0, 3, 1, 2)
images = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0)
return images
|