File size: 12,112 Bytes
af44a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import os
import numpy as np
import random
import cv2
import math
from scipy import special
from skimage import restoration

import torch
from torch.nn import functional as F
from torchvision.utils import make_grid


def uint2single(img):
    return np.float32(img/255.)


def single2uint(img):
    return np.uint8((img.clip(0, 1)*255.).round())


def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.
    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.
    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == 'float64':
                img = img.astype('float32')
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    else:
        return _totensor(imgs, bgr2rgb, float32)


def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
    """Convert torch Tensors into image numpy arrays.
    After clamping to [min, max], values will be normalized to [0, 1].
    Args:
        tensor (Tensor or list[Tensor]): Accept shapes:
            1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
            2) 3D Tensor of shape (3/1 x H x W);
            3) 2D Tensor of shape (H x W).
            Tensor channel should be in RGB order.
        rgb2bgr (bool): Whether to change rgb to bgr.
        out_type (numpy type): output types. If ``np.uint8``, transform outputs
            to uint8 type with range [0, 255]; otherwise, float type with
            range [0, 1]. Default: ``np.uint8``.
        min_max (tuple[int]): min and max values for clamp.
    Returns:
        (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
        shape (H x W). The channel order is BGR.
    """
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    if torch.is_tensor(tensor):
        tensor = [tensor]
    result = []
    for _tensor in tensor:
        _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
        _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])

        n_dim = _tensor.dim()
        if n_dim == 4:
            img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
            img_np = img_np.transpose(1, 2, 0)
            if rgb2bgr:
                img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 3:
            img_np = _tensor.numpy()
            img_np = img_np.transpose(1, 2, 0)
            if img_np.shape[2] == 1:  # gray image
                img_np = np.squeeze(img_np, axis=2)
            else:
                if rgb2bgr:
                    img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 2:
            img_np = _tensor.numpy()
        else:
            raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
        if out_type == np.uint8:
            # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
            img_np = (img_np * 255.0).round()
        img_np = img_np.astype(out_type)
        result.append(img_np)
    if len(result) == 1:
        result = result[0]
    return result


def get_noise(img, value=10):

    noise = np.random.uniform(0, 256, img.shape[0:2])
    
    v = value * 0.01
    noise[np.where(noise < (256 - v))] = 0

    k = np.array([[0, 0.1, 0],
                  [0.1, 8, 0.1],
                  [0, 0.1, 0]])

    noise = cv2.filter2D(noise, -1, k)

    '''cv2.imshow('img',noise)
    cv2.waitKey()
    cv2.destroyWindow('img')'''
    return noise


def rain_blur(noise, length=10, angle=0, w=1):

    trans = cv2.getRotationMatrix2D((length / 2, length / 2), angle - 45, 1 - length / 100.0)
    dig = np.diag(np.ones(length))  
    k = cv2.warpAffine(dig, trans, (length, length))  
    k = cv2.GaussianBlur(k, (w, w), 0)  

    blurred = cv2.filter2D(noise, -1, k)  

    cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
    blurred = np.array(blurred, dtype=np.uint8)

    rain = np.expand_dims(blurred, 2)
    blurred = np.repeat(rain, 3, 2)

    return blurred


def add_rain(img,value):
    if np.max(img) > 1:
        pass
    else:
        img = img*255


    w, h, c = img.shape
    h = h - (h % 4)
    w = w - (w % 4)
    img = img[0:w, 0:h, :]


    w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
    length = np.random.randint(30, 41) 
    angle = np.random.randint(-45, 45) 

    noise = get_noise(img, value=value)
    rain = rain_blur(noise, length=length, angle=angle, w=w)

    img = img.astype('float32') + rain
    np.clip(img, 0, 255, out=img)
    img = img/255.0
    return img


def add_rain_range(img, value_min, value_max):
    value = np.random.randint(value_min, value_max)
    if np.max(img) > 1:
        pass
    else:
        img = img*255


    w, h, c = img.shape
    h = h - (h % 4)
    w = w - (w % 4)
    img = img[0:w, 0:h, :]


    w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
    length = np.random.randint(30, 41) 
    angle = np.random.randint(-45, 45) 

    noise = get_noise(img, value=value)
    rain = rain_blur(noise, length=length, angle=angle, w=w)

    img = img.astype('float32') + rain
    np.clip(img, 0, 255, out=img)
    img = img/255.0
    return img


def add_Poisson_noise(img, level=2):
    # input range[0, 1]
    vals = 10**(level)  
    img = np.random.poisson(img * vals).astype(np.float32) / vals
    img = np.clip(img, 0.0, 1.0)
    return img


def add_Gaussian_noise(img, level=20):
    # input range[0, 1]
    noise_level = level / 255.0
    noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
    img += noise_map
    img = np.clip(img, 0.0, 1.0)
    return img


def add_Gaussian_noise_range(img, min_level=10, max_level=50):
    # input range[0, 1]
    level = random.uniform(min_level, max_level)
    noise_level = level / 255.0
    noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
    img += noise_map
    img = np.clip(img, 0.0, 1.0)
    return img


def add_sp_noise(img, snr=0.95, salt_pro=0.5):
    # input range[0, 1]
    output = np.copy(img)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            rdn = random.random()
            if rdn < snr:
                output[i][j] = img[i][j]
            else:
                rdn = random.random()
                if rdn < salt_pro:
                    output[i][j] = 1
                else:
                    output[i][j] = 0
    
    return output


def add_JPEG_noise(img, level):

    quality_factor = level
    img = single2uint(img)
    _, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
    img = cv2.imdecode(encimg, 1)
    img = uint2single(img)
    
    return img


def add_JPEG_noise_range(img, level_min, level_max):

    quality_factor = random.randint(level_min, level_max)
    img = single2uint(img)
    _, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
    img = cv2.imdecode(encimg, 1)
    img = uint2single(img)
    
    return img


def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
    """2D sinc filter, ref: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter

    Args:
        cutoff (float): cutoff frequency in radians (pi is max)
        kernel_size (int): horizontal and vertical size, must be odd.
        pad_to (int): pad kernel size to desired size, must be odd or zero.
    """
    assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
    kernel = np.fromfunction(
        lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
            (x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) / ((2 * np.pi * np.sqrt(
            (x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) + 1e-9), [kernel_size, kernel_size])
    kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff ** 2 / (4 * np.pi)
    kernel = kernel / np.sum(kernel)
    if pad_to > kernel_size:
        pad_size = (pad_to - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
    return kernel


def filter2D(img, kernel):
    """PyTorch version of cv2.filter2D
    Args:
        img (Tensor): (b, c, h, w)
        kernel (Tensor): (b, k, k)
    """
    k = kernel.size(-1)
    b, c, h, w = img.size()
    if k % 2 == 1:
        img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect')
    else:
        raise ValueError('Wrong kernel size')

    ph, pw = img.size()[-2:]

    if kernel.size(0) == 1:
        # apply the same kernel to all batch images
        img = img.view(b * c, 1, ph, pw)
        kernel = kernel.view(1, 1, k, k)
        return F.conv2d(img, kernel, padding=0).view(b, c, h, w)
    else:
        img = img.view(1, b * c, ph, pw)
        kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k)
        return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w)


def sinc(img, kernel_size,omega_c):

    sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
    sinc_kernel = torch.FloatTensor(sinc_kernel)

    img = filter2D(img,sinc_kernel)

    return img


def add_ringing(img):
    # input: [0, 1]
    img = img2tensor([img])[0].unsqueeze(0)
    ks = 15
    omega_c = round(1.2, 2)
    img = sinc(img, ks, omega_c)
    img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
    img = tensor2img(img, min_max=(0, 1))
    img = img/255.0
    return img


def low_light(img, lum_scale):
    img = img*lum_scale
    return img


def low_light_range(img):
    lum_scale = random.uniform(0.1, 0.5)
    img = img*lum_scale
    return img


def iso_GaussianBlur(img, window, sigma):
    img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
    return img


def iso_GaussianBlur_range(img, window, min_sigma=2, max_sigma=4):
    sigma = random.uniform(min_sigma, max_sigma)
    img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
    return img


def add_resize(img):
    ori_H, ori_W = img.shape[0], img.shape[1]
    rnum = np.random.rand()
    if rnum > 0.8:  # up
        sf1 = random.uniform(1, 2)
    elif rnum < 0.7:  # down
        sf1 = random.uniform(0.2, 1)
    else:
        sf1 = 1.0
    img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
    img = cv2.resize(img, (int(ori_W), int(ori_H)), interpolation=random.choice([1, 2, 3]))
    
    img = np.clip(img, 0.0, 1.0)

    return img


def r_l(img):
    img = img2tensor([img],bgr2rgb=False)[0].unsqueeze(0)
    psf = np.ones((1, 1, 5, 5))
    psf = psf / psf.sum()
    img = img.numpy()
    img = np.pad(img, ((0, 0), (0, 0), (7, 7), (7, 7)), 'linear_ramp')
    img = restoration.richardson_lucy(img, psf, 1)
    img = img[:, :, 7:-7, 7:-7]
    img = torch.from_numpy(img)
    img = img.squeeze(0).numpy().transpose(1, 2, 0)
    return img


def inpainting(img,l_num,l_thick):

    ori_h, ori_w = img.shape[0], img.shape[1]
    mask = np.zeros((ori_h, ori_w, 3), np.uint8)
    col = random.choice(['white', 'black'])
    while (l_num):
        x1, y1 = random.randint(0, ori_w), random.randint(0, ori_h)
        x2, y2 = random.randint(0, ori_w), random.randint(0, ori_h)
        pts = np.array([[x1, y1], [x2, y2]], np.int32)
        pts = pts.reshape((-1, 1, 2))
        mask = cv2.polylines(mask, [pts], 0, (1, 1, 1), l_thick)
        l_num -= 1

    if col == 'white':
        img = np.clip(img + mask, 0, 1)
    else:
        img = np.clip(img - mask, 0, 1)

    return img