File size: 10,000 Bytes
9887d4c
 
 
 
7696de6
 
5f17485
 
9887d4c
d5c7e06
 
5f17485
 
 
 
 
 
 
49cebed
 
a1e9510
7696de6
 
 
 
 
9887d4c
d5c7e06
cd1d8d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49cebed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
import sys
import importlib.util

import spaces

# ์ค‘์š”: ํŒจ์น˜ ์ ์šฉ - huggingface_hub์— cached_download ํ•จ์ˆ˜ ์ถ”๊ฐ€
import huggingface_hub
if not hasattr(huggingface_hub, "cached_download"):
    # ๊ธฐ์กด hf_hub_download ํ•จ์ˆ˜๋ฅผ cached_download๋กœ ๋ณ„์นญ ์ถ”๊ฐ€
    huggingface_hub.cached_download = huggingface_hub.hf_hub_download
    
# ๊ทธ ํ›„ ๋‚˜๋จธ์ง€ ์ž„ํฌํŠธ ์ง„ํ–‰
from huggingface_hub import snapshot_download, hf_hub_download, model_info

from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import AutoencoderKL, EulerDiscreteScheduler


device = "cuda"
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ckpt_dir = f'{root_dir}/weights/Kolors'

snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")

# Load models
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
    ignore_mismatched_sizes=True
).to(dtype=torch.float16, device=device)

ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
).to(device)

if hasattr(pipe.unet, 'encoder_hid_proj'):
    pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj

pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# ----------------------------------------------
# infer ํ•จ์ˆ˜ (๊ธฐ์กด ๋กœ์ง ๊ทธ๋Œ€๋กœ ์œ ์ง€)
# ----------------------------------------------
@spaces.GPU(duration=80)
def infer(
    user_prompt,
    ip_adapter_image,
    ip_adapter_scale=0.5,
    negative_prompt="",
    seed=100,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=5.0,
    num_inference_steps=50,
    progress=gr.Progress(track_tqdm=True)
):
    # ์ˆจ๊ฒจ์ง„(๊ธฐ๋ณธ/ํ•„์ˆ˜) ํ”„๋กฌํ”„ํŠธ
    hidden_prompt = (
        "Ghibli Studio style, Charming hand-drawn anime-style illustration"
    )

    # ์‹ค์ œ๋กœ ํŒŒ์ดํ”„๋ผ์ธ์— ์ „๋‹ฌํ•  ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ
    prompt = f"{hidden_prompt}, {user_prompt}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe.to("cuda")
    image_encoder.to("cuda")
    pipe.image_encoder = image_encoder
    pipe.set_ip_adapter_scale([ip_adapter_scale])
    
    image = pipe(
        prompt=prompt,
        ip_adapter_image=[ip_adapter_image],
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    [
        "background alps",        
        "gh0.webp",
        0.5
    ],
    [
        "dancing",        
        "gh5.jpg",
        0.5
    ],    
    [
        "smile",
        "gh2.jpg",
        0.5
    ],
    [
        "3d style",        
        "gh3.webp",
        0.6
    ],
    [
        "with Pikachu",        
        "gh4.jpg",
        0.5
    ],
    [
        "Ghibli Studio style, Charming hand-drawn anime-style illustration",
        "gh7.jpg",
        0.5
    ],        
    [
        "Ghibli Studio style, Charming hand-drawn anime-style illustration",
        "gh1.jpg",
        0.5
    ],    
]

# --------------------------
# ๊ฐœ์„ ๋œ UI๋ฅผ ์œ„ํ•œ CSS
# --------------------------
css = """
body {
    background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
    font-family: 'Helvetica Neue', Arial, sans-serif;
    color: #333;
    margin: 0;
    padding: 0;
}

#col-container {
    margin: 0 auto !important;
    max-width: 720px;
    background: rgba(255,255,255,0.85);
    border-radius: 16px;
    padding: 2rem;
    box-shadow: 0 8px 24px rgba(0,0,0,0.1);
}

#header-title {
    text-align: center;
    font-size: 2rem;
    font-weight: bold;
    margin-bottom: 1rem;
}

#prompt-row {
    display: flex;
    gap: 0.5rem;
    align-items: center;
    margin-bottom: 1rem;
}

#prompt-text {
    flex: 1;
}

#result img {
    object-position: top;
    border-radius: 8px;
}

#result .image-container {
    height: 100%;
}

.gr-button {
    background-color: #2E8BFB !important;
    color: white !important;
    border: none !important;
    transition: background-color 0.2s ease;
}

.gr-button:hover {
    background-color: #186EDB !important;
}

.gr-slider input[type=range] {
    accent-color: #2E8BFB !important;
}

.gr-box {
    background-color: #fafafa !important;
    border: 1px solid #ddd !important;
    border-radius: 8px !important;
    padding: 1rem !important;
}

#advanced-settings {
    margin-top: 1rem;
    border-radius: 8px;
}
"""

with gr.Blocks(theme="apriel", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<div id='header-title'>Ghibli Meme Studio</div>")
        gr.Markdown("<div id='header-title' style='font-size: 12px;'>Community: https://discord.gg/openfreeai</div>")
        
        # ์ƒ๋‹จ: ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ + ์‹คํ–‰ ๋ฒ„ํŠผ
        with gr.Row(elem_id="prompt-row"):
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                elem_id="prompt-text",
            )
            run_button = gr.Button("Run", elem_id="run-button")
        
        # ๊ฐ€์šด๋ฐ: ์ด๋ฏธ์ง€ ์ž…๋ ฅ๊ณผ ์Šฌ๋ผ์ด๋”, ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€
        with gr.Row():
            with gr.Column():
                ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
                ip_adapter_scale = gr.Slider(
                    label="Image influence scale",
                    info="Use 1 for creating variations",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.5,
                )
            result = gr.Image(label="Result", elem_id="result")

        # ํ•˜๋‹จ: ๊ณ ๊ธ‰ ์„ค์ •(Accordion)
        with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=2,
                placeholder=(
                    "Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, "
                    "missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, "
                    "normal quality, jpeg artifacts, signature, watermark, username, blurry, "
                    "artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, "
                    "3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)"
                ),
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
        
        # ์˜ˆ์‹œ๋“ค
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, ip_adapter_image, ip_adapter_scale],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    # ๋ฒ„ํŠผ ํด๋ฆญ/ํ”„๋กฌํ”„ํŠธ ์—”ํ„ฐ ์‹œ ์‹คํ–‰
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            ip_adapter_image,
            ip_adapter_scale,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps
        ],
        outputs=[result, seed]
    )

demo.queue().launch()