File size: 11,205 Bytes
24c51c9
 
 
 
 
0369855
24c51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0369855
24c51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac966c
 
 
 
 
 
 
 
 
24c51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0369855
24c51c9
 
 
 
 
 
 
78f8a2a
 
 
24c51c9
 
78f8a2a
24c51c9
78f8a2a
 
 
 
 
 
 
 
 
 
 
 
 
24c51c9
78f8a2a
24c51c9
 
3ac966c
0369855
24c51c9
 
 
78f8a2a
 
 
 
 
 
 
 
 
 
 
 
24c51c9
 
 
 
3ac966c
24c51c9
3ac966c
 
24c51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ac966c
24c51c9
 
 
 
 
 
 
 
 
3ac966c
24c51c9
 
 
 
 
 
 
3ac966c
24c51c9
 
 
 
 
3ac966c
24c51c9
 
 
 
 
 
 
 
 
 
 
78f8a2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24c51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286f29e
24c51c9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
import spaces
import torch
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from PIL import Image
import os

# Style dictionary
style_type_lora_dict = {
    "3D_Chibi": "3D_Chibi_lora_weights.safetensors",
    "American_Cartoon": "American_Cartoon_lora_weights.safetensors",
    "Chinese_Ink": "Chinese_Ink_lora_weights.safetensors",
    "Clay_Toy": "Clay_Toy_lora_weights.safetensors",
    "Fabric": "Fabric_lora_weights.safetensors",
    "Ghibli": "Ghibli_lora_weights.safetensors",
    "Irasutoya": "Irasutoya_lora_weights.safetensors",
    "Jojo": "Jojo_lora_weights.safetensors",
    "Oil_Painting": "Oil_Painting_lora_weights.safetensors",
    "Pixel": "Pixel_lora_weights.safetensors",
    "Snoopy": "Snoopy_lora_weights.safetensors",
    "Poly": "Poly_lora_weights.safetensors",
    "LEGO": "LEGO_lora_weights.safetensors",
    "Origami": "Origami_lora_weights.safetensors",
    "Pop_Art": "Pop_Art_lora_weights.safetensors",
    "Van_Gogh": "Van_Gogh_lora_weights.safetensors",
    "Paper_Cutting": "Paper_Cutting_lora_weights.safetensors",
    "Line": "Line_lora_weights.safetensors",
    "Vector": "Vector_lora_weights.safetensors",
    "Picasso": "Picasso_lora_weights.safetensors",
    "Macaron": "Macaron_lora_weights.safetensors",
    "Rick_Morty": "Rick_Morty_lora_weights.safetensors"
}

# Style descriptions
style_descriptions = {
    "3D_Chibi": "Cute, miniature 3D character style with big heads",
    "American_Cartoon": "Classic American animation style",
    "Chinese_Ink": "Traditional Chinese ink painting aesthetic",
    "Clay_Toy": "Playful clay/plasticine toy appearance",
    "Fabric": "Soft, textile-like rendering",
    "Ghibli": "Studio Ghibli's distinctive anime style",
    "Irasutoya": "Simple, flat Japanese illustration style",
    "Jojo": "JoJo's Bizarre Adventure manga style",
    "Oil_Painting": "Classic oil painting texture and strokes",
    "Pixel": "Retro pixel art style",
    "Snoopy": "Peanuts comic strip style",
    "Poly": "Low-poly 3D geometric style",
    "LEGO": "LEGO brick construction style",
    "Origami": "Paper folding art style",
    "Pop_Art": "Bold, colorful pop art style",
    "Van_Gogh": "Van Gogh's expressive brushstroke style",
    "Paper_Cutting": "Paper cut-out art style",
    "Line": "Clean line art/sketch style",
    "Vector": "Clean vector graphics style",
    "Picasso": "Cubist art style inspired by Picasso",
    "Macaron": "Soft, pastel macaron-like style",
    "Rick_Morty": "Rick and Morty cartoon style"
}

# Mapping for thumbnail files
thumbnail_mapping = {
    "3D_Chibi": "3D_Chibi.webp",
    "American_Cartoon": "american_cartoon.webp",
    "Chinese_Ink": "chinese_ink.webp",
    "Clay_Toy": "clay_toy.webp",
    "Fabric": "fabric.webp",
    "Ghibli": "ghibli.webp",
    "Irasutoya": "Irasutoya.webp",
    "Jojo": "jojo.webp",
    "Oil_Painting": "oil_painting.webp",
    "Pixel": "pixel.webp",
    "Snoopy": "snoopy.webp",
    "Poly": "poly.webp",
    "LEGO": "LEGO.webp",
    "Origami": "origami.webp",
    "Pop_Art": "pop-art.webp",
    "Van_Gogh": "van_gogh.webp",
    "Paper_Cutting": "Paper_Cutting.webp",
    "Line": "line.webp",
    "Vector": "vector.webp",
    "Picasso": "picasso.webp",
    "Macaron": "Macaron.webp",
    "Rick_Morty": "Rick_Morty.webp"
}

# Initialize pipeline globally
pipeline = None
pipeline_loaded = False

def load_pipeline():
    global pipeline, pipeline_loaded
    if pipeline is None:
        print("Loading FLUX.1-Kontext-dev model...")
        # HF_TOKEN μžλ™ 감지
        token = os.getenv("HF_TOKEN", True)
        
        pipeline = FluxKontextPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-Kontext-dev", 
            torch_dtype=torch.bfloat16,
            use_auth_token=token
        )
        pipeline_loaded = True
    return pipeline

def load_default_image():
    """Load the default man.webp image"""
    if os.path.exists("man.webp"):
        try:
            return Image.open("man.webp")
        except Exception as e:
            print(f"Error loading default image: {e}")
    return None

@spaces.GPU(duration=120)
def style_transfer(input_image, style_name, prompt_suffix, num_inference_steps, guidance_scale, seed):
    """
    Apply style transfer to the input image using selected style
    """
    if input_image is None:
        gr.Warning("Please upload an image first!")
        return None
    
    try:
        # Load pipeline and move to GPU
        pipe = load_pipeline()
        pipe = pipe.to('cuda')
        
        # Enable memory efficient settings
        pipe.enable_model_cpu_offload()
        
        # Set seed for reproducibility
        generator = None
        if seed > 0:
            generator = torch.Generator(device="cuda").manual_seed(seed)
        
        # Process input image
        if isinstance(input_image, str):
            image = load_image(input_image)
        else:
            image = input_image
        
        # Ensure RGB and resize to 1024x1024
        image = image.convert("RGB").resize((1024, 1024), Image.Resampling.LANCZOS)
        
        # Load the selected LoRA
        lora_filename = style_type_lora_dict[style_name]
        
        # Clear any previously loaded LoRA
        try:
            pipe.unload_lora_weights()
        except:
            pass
        
        # Load LoRA weights
        pipe.load_lora_weights(
            "Owen777/Kontext-Style-Loras",
            weight_name=lora_filename,
            adapter_name="style"
        )
        pipe.set_adapters(["style"], adapter_weights=[1.0])
        
        # Create prompt for style transformation
        style_name_readable = style_name.replace('_', ' ')
        prompt = f"Turn this image into the {style_name_readable} style."
        if prompt_suffix and prompt_suffix.strip():
            prompt += f" {prompt_suffix.strip()}"
        
        print(f"Generating with prompt: {prompt}")
        
        # Generate the styled image
        result = pipe(
            image=image,
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
            height=1024,
            width=1024
        )
        
        # Clear GPU memory
        torch.cuda.empty_cache()
        
        return result.images[0]
        
    except Exception as e:
        print(f"Error: {str(e)}")
        gr.Error(f"Error during style transfer: {str(e)}")
        torch.cuda.empty_cache()
        return None

def create_thumbnail_grid():
    """Create a gallery of style thumbnails"""
    thumbnails = []
    styles = list(style_type_lora_dict.keys())
    
    for style in styles:
        thumbnail_file = thumbnail_mapping.get(style, "")
        if thumbnail_file and os.path.exists(thumbnail_file):
            try:
                img = Image.open(thumbnail_file)
                thumbnails.append((img, style.replace('_', ' ')))
            except Exception as e:
                print(f"Error loading thumbnail {thumbnail_file}: {e}")
                # Create placeholder if thumbnail fails to load
                placeholder = Image.new('RGB', (256, 256), color='lightgray')
                thumbnails.append((placeholder, style.replace('_', ' ')))
        else:
            # Create placeholder for missing thumbnails
            placeholder = Image.new('RGB', (256, 256), color='lightgray')
            thumbnails.append((placeholder, style.replace('_', ' ')))
    
    return thumbnails

# Create Gradio interface
with gr.Blocks(title="Flux Kontext Style LoRA", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🎨 Flux Styler : Flux Kontext Style LoRA")
    
    # Thumbnail Grid Section
    with gr.Row():
        style_gallery = gr.Gallery(
            value=create_thumbnail_grid(),
            label="Style Thumbnails",
            show_label=False,
            elem_id="style_gallery",
            columns=6,
            rows=4,
            object_fit="cover",
            height="auto",
            interactive=True,
            show_download_button=False
        )
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(
                label="Input Image",
                type="pil",
                height=400,
                value=load_default_image()
            )
            
            style_dropdown = gr.Dropdown(
                choices=list(style_type_lora_dict.keys()),
                value="Ghibli",
                label="Selected Style",
                elem_id="style_dropdown"
            )
            
            style_info = gr.Textbox(
                label="Style Description",
                value=style_descriptions["Ghibli"],
                interactive=False,
                lines=2
            )
            
            prompt_suffix = gr.Textbox(
                label="Additional Instructions (Optional)",
                placeholder="Add extra details...",
                lines=2
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                num_steps = gr.Slider(
                    minimum=10,
                    maximum=50,
                    value=24,
                    step=1,
                    label="Inference Steps"
                )
                
                guidance = gr.Slider(
                    minimum=1.0,
                    maximum=5.0,
                    value=2.5,
                    step=0.1,
                    label="Guidance Scale"
                )
                
                seed = gr.Number(
                    label="Seed",
                    value=42,
                    precision=0
                )
            
            generate_btn = gr.Button("🎨 Transform Image", variant="primary", size="lg")
        
        with gr.Column(scale=1):
            output_image = gr.Image(
                label="Styled Result",
                type="pil",
                height=400
            )
    
    # Handle gallery selection
    def on_gallery_select(evt: gr.SelectData):
        """Handle thumbnail selection from gallery"""
        selected_index = evt.index
        styles = list(style_type_lora_dict.keys())
        if 0 <= selected_index < len(styles):
            selected_style = styles[selected_index]
            return selected_style, style_descriptions.get(selected_style, "")
        return None, None
    
    style_gallery.select(
        fn=on_gallery_select,
        inputs=None,
        outputs=[style_dropdown, style_info]
    )
    
    # Update style description when style changes
    def update_description(style):
        return style_descriptions.get(style, "")
    
    style_dropdown.change(
        fn=update_description,
        inputs=[style_dropdown],
        outputs=[style_info]
    )
    
    # Connect the generate button
    generate_btn.click(
        fn=style_transfer,
        inputs=[input_image, style_dropdown, prompt_suffix, num_steps, guidance, seed],
        outputs=output_image
    )
    
    gr.Markdown("""
    ---
    Powered by ❀️ https://discord.gg/openfreeai
    """)

if __name__ == "__main__":
    demo.launch()