Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,042 Bytes
0c2c127 706e9b1 4369019 706e9b1 f48fc96 eb9d3dc 3da2256 eb9d3dc 3da2256 eb9d3dc f48fc96 3da2256 706e9b1 f48fc96 0c2c127 4369019 0c2c127 1e8ff8a 4369019 1e8ff8a 0c2c127 f48fc96 0c2c127 f48fc96 0c2c127 f48fc96 0c2c127 f48fc96 4369019 f48fc96 0c2c127 f48fc96 0c2c127 f48fc96 4369019 f48fc96 1e8ff8a 4369019 1e8ff8a 0c2c127 1e8ff8a 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 3da2256 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 4369019 0c2c127 eb9d3dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
from safetensors.torch import load_file
import requests
import re
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# Load LoRA data
flux_loras_raw = [
{
"image": "examples/1.png",
"title": "Studio Ghibli",
"repo": "openfree/flux-chatgpt-ghibli-lora",
"trigger_word": "ghibli",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/2.png",
"title": "Winslow Homer",
"repo": "openfree/winslow-homer",
"trigger_word": "homer",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/3.png",
"title": "Van Gogh",
"repo": "openfree/van-gogh",
"trigger_word": "gogh",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/4.png",
"title": "Paul Cézanne",
"repo": "openfree/paul-cezanne",
"trigger_word": "Cezanne",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/5.png",
"title": "Renoir",
"repo": "openfree/pierre-auguste-renoir",
"trigger_word": "Renoir",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/6.png",
"title": "Claude Monet",
"repo": "openfree/claude-monet",
"trigger_word": "claude monet",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
},
{
"image": "examples/7.png",
"title": "Fantasy Art",
"repo": "openfree/myt-flux-fantasy",
"trigger_word": "fantasy",
"weights": "pytorch_lora_weights.safetensors",
"likes": 0
}
]
print(f"Loaded {len(flux_loras_raw)} LoRAs")
# Global variables for LoRA management
current_lora = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load LoRA weights from HuggingFace"""
try:
# First try with the specified filename
try:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
if repo_id not in lora_cache:
lora_cache[repo_id] = lora_path
return lora_path
except Exception as e:
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
# If the specified file doesn't exist, try to find any .safetensors file
from huggingface_hub import list_repo_files
try:
files = list_repo_files(repo_id)
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
if not safetensors_files:
# Try without 'lora' in filename
safetensors_files = [f for f in files if f.endswith('.safetensors')]
if safetensors_files:
# Try the first available file
for file in safetensors_files:
try:
print(f"Trying alternative file: {file}")
lora_path = hf_hub_download(repo_id=repo_id, filename=file)
if repo_id not in lora_cache:
lora_cache[repo_id] = lora_path
print(f"Successfully loaded alternative LoRA file: {file}")
return lora_path
except:
continue
print(f"No suitable LoRA files found in {repo_id}")
return None
except Exception as list_error:
print(f"Error listing files in repo {repo_id}: {list_error}")
return None
except Exception as e:
print(f"Error loading LoRA from {repo_id}: {e}")
return None
def update_selection(selected_state: gr.SelectData, flux_loras):
"""Update UI when a LoRA is selected"""
if selected_state.index >= len(flux_loras):
return "### No LoRA selected", gr.update(), None
lora = flux_loras[selected_state.index]
lora_title = lora["title"]
lora_repo = lora["repo"]
trigger_word = lora["trigger_word"]
# Create a more informative selected text
updated_text = f"### 🎨 Selected Style: {lora_title}"
new_placeholder = f"Describe additional details, e.g., 'wearing a red hat' or 'smiling'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def get_huggingface_lora(link):
"""Download LoRA from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
# Try to find the correct safetensors file
files = list_repo_files(link)
safetensors_files = [f for f in files if f.endswith('.safetensors')]
# Prioritize files with 'lora' in the name
lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
if lora_files:
safetensors_file = lora_files[0]
elif safetensors_files:
safetensors_file = safetensors_files[0]
else:
# Try .bin files as fallback
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
if bin_files:
safetensors_file = bin_files[0]
else:
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback
print(f"Found LoRA file: {safetensors_file} in {link}")
return split_link[1], safetensors_file, trigger_word
except Exception as e:
print(f"Error in get_huggingface_lora: {e}")
# Try basic detection
try:
files = list_repo_files(link)
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
return split_link[1], safetensors_file, ""
except:
raise Exception(f"Error loading LoRA: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_custom_lora(link):
"""Load custom LoRA from user input"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### 🎨 Select an art style from the gallery", None
try:
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
card = f'''
<div class="custom_lora_card">
<div style="display: flex; align-items: center; margin-bottom: 12px;">
<span style="font-size: 18px; margin-right: 8px;">✅</span>
<strong style="font-size: 16px;">Custom LoRA Loaded!</strong>
</div>
<div style="background: rgba(255, 255, 255, 0.8); padding: 12px; border-radius: 8px;">
<h4 style="margin: 0 0 8px 0; color: #333;">{repo_name}</h4>
<small style="color: #666;">{"Trigger: <code style='background: #f0f0f0; padding: 2px 6px; border-radius: 4px;'><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
custom_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"🎨 Custom Style: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### 🎨 Select an art style from the gallery", None
def remove_custom_lora():
"""Remove custom LoRA"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def classify_gallery(flux_loras):
"""Sort gallery by likes"""
try:
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
gallery_items = []
for item in sorted_gallery:
if "image" in item and "title" in item:
image_path = item["image"]
title = item["title"]
# Simply use the path as-is for Gradio to handle
gallery_items.append((image_path, title))
print(f"Added to gallery: {image_path} - {title}")
print(f"Total gallery items: {len(gallery_items)}")
return gallery_items, sorted_gallery
except Exception as e:
print(f"Error in classify_gallery: {e}")
import traceback
traceback.print_exc()
return [], []
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper function to handle state serialization"""
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Generate image with selected LoRA"""
global current_lora, pipe
# Check if input image is provided
if input_image is None:
gr.Warning("Please upload your portrait photo first! 📸")
return None, seed, gr.update(visible=False)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Determine which LoRA to use
lora_to_use = None
if custom_lora:
lora_to_use = custom_lora
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
lora_to_use = flux_loras[selected_index]
# Load LoRA if needed
if lora_to_use and lora_to_use != current_lora:
try:
# Unload current LoRA
if current_lora:
pipe.unload_lora_weights()
print(f"Unloaded previous LoRA")
# Load new LoRA
repo_id = lora_to_use.get("repo", "unknown")
weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
lora_path = load_lora_weights(repo_id, weights_file)
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
current_lora = lora_to_use
else:
print(f"Failed to load LoRA from {repo_id}")
gr.Warning(f"Failed to load {lora_to_use.get('title', 'style')}. Please try a different art style.")
return None, seed, gr.update(visible=False)
except Exception as e:
print(f"Error loading LoRA: {e}")
# Continue without LoRA
else:
if lora_to_use:
print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
try:
# Convert image to RGB
input_image = input_image.convert("RGB")
except Exception as e:
print(f"Error processing image: {e}")
gr.Warning("Error processing the uploaded image. Please try a different photo. 📸")
return None, seed, gr.update(visible=False)
# Check if LoRA is selected
if lora_to_use is None:
gr.Warning("Please select an art style from the gallery first! 🎨")
return None, seed, gr.update(visible=False)
# Add trigger word to prompt
trigger_word = lora_to_use.get("trigger_word", "")
# Special handling for different art styles
if trigger_word == "ghibli":
prompt = f"Create a Studio Ghibli anime style portrait of the person in the photo, {prompt}. Maintain the facial identity while transforming into whimsical anime art style."
elif trigger_word == "homer":
prompt = f"Paint the person in Winslow Homer's American realist style, {prompt}. Keep facial features while applying watercolor and marine art techniques."
elif trigger_word == "gogh":
prompt = f"Transform the portrait into Van Gogh's post-impressionist style with swirling brushstrokes, {prompt}. Maintain facial identity with expressive colors."
elif trigger_word == "Cezanne":
prompt = f"Render the person in Paul Cézanne's geometric post-impressionist style, {prompt}. Keep facial structure while applying structured brushwork."
elif trigger_word == "Renoir":
prompt = f"Paint the portrait in Pierre-Auguste Renoir's impressionist style with soft light, {prompt}. Maintain identity with luminous skin tones."
elif trigger_word == "claude monet":
prompt = f"Create an impressionist portrait in Claude Monet's style with visible brushstrokes, {prompt}. Keep facial features while using light and color."
elif trigger_word == "fantasy":
prompt = f"Transform into an epic fantasy character portrait, {prompt}. Maintain facial identity while adding magical and fantastical elements."
elif trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == ", video game screenshot in the style of THSMS":
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
else:
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during inference: {e}")
return None, seed, gr.update(visible=False)
# CSS styling with beautiful gradient pastel design
css = """
/* Global background and container styling */
.gradio-container {
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
font-family: 'Inter', sans-serif;
}
/* Main app container */
#main_app {
display: flex;
gap: 24px;
padding: 20px;
background: rgba(255, 255, 255, 0.85);
backdrop-filter: blur(20px);
border-radius: 24px;
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
}
/* Box column styling */
#box_column {
min-width: 400px;
}
/* Gallery box with glassmorphism */
#gallery_box {
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
border-radius: 20px;
padding: 20px;
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
border: 1px solid rgba(255, 255, 255, 0.8);
}
/* Input image styling */
.image-container {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
}
/* Gallery styling */
#gallery {
overflow-y: scroll !important;
max-height: 400px;
padding: 12px;
background: rgba(255, 255, 255, 0.5);
border-radius: 16px;
scrollbar-width: thin;
scrollbar-color: #ddd6fe #f5f3ff;
}
#gallery::-webkit-scrollbar {
width: 8px;
}
#gallery::-webkit-scrollbar-track {
background: #f5f3ff;
border-radius: 10px;
}
#gallery::-webkit-scrollbar-thumb {
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
border-radius: 10px;
}
/* Selected LoRA text */
#selected_lora {
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 18px;
text-align: center;
padding: 12px;
margin-bottom: 16px;
}
/* Prompt input field */
#prompt {
flex-grow: 1;
border: 2px solid transparent;
background: linear-gradient(white, white) padding-box,
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
border-radius: 12px;
padding: 12px 16px;
font-size: 16px;
transition: all 0.3s ease;
}
#prompt:focus {
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
}
/* Run button with animated gradient */
#run_button {
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
background-size: 200% 200%;
animation: gradient-shift 3s ease infinite;
color: white;
border: none;
padding: 12px 32px;
border-radius: 12px;
font-weight: 600;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
}
#run_button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
}
@keyframes gradient-shift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* Custom LoRA card */
.custom_lora_card {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border: 1px solid #fcd34d;
border-radius: 12px;
padding: 16px;
margin: 12px 0;
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
}
/* Result image container */
.output-image {
border-radius: 16px;
overflow: hidden;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
margin-top: 20px;
}
/* Accordion styling */
.accordion {
background: rgba(249, 250, 251, 0.9);
border-radius: 12px;
border: 1px solid rgba(229, 231, 235, 0.8);
margin-top: 16px;
}
/* Slider styling */
.slider-container {
padding: 8px 0;
}
input[type="range"] {
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
border-radius: 8px;
height: 6px;
}
/* Reuse button */
button:not(#run_button) {
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
color: white;
border: none;
padding: 8px 20px;
border-radius: 8px;
font-weight: 500;
cursor: pointer;
transition: all 0.3s ease;
}
button:not(#run_button):hover {
transform: translateY(-1px);
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
}
/* Title styling */
h1 {
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
font-size: 3.5rem;
font-weight: 800;
margin-bottom: 8px;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
}
h1 small {
display: block;
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 1rem;
font-weight: 500;
margin-top: 8px;
}
/* Checkbox styling */
input[type="checkbox"] {
accent-color: #8b5cf6;
}
/* Label styling */
label {
color: #4b5563;
font-weight: 500;
}
/* Group containers */
.gr-group {
background: rgba(255, 255, 255, 0.7);
border-radius: 16px;
padding: 20px;
border: 1px solid rgba(255, 255, 255, 0.9);
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr_flux_loras = gr.State(value=flux_loras_raw)
title = gr.HTML(
"""<h1>✨ Flux-Kontext FaceLORA
<small>Transform your portraits with AI-powered style transfer 🎨</small></h1>""",
)
selected_state = gr.State(value=None)
custom_loaded_lora = gr.State(value=None)
with gr.Row(elem_id="main_app"):
with gr.Column(scale=4, elem_id="box_column"):
with gr.Group(elem_id="gallery_box"):
input_image = gr.Image(label="Upload your portrait photo 📸", type="pil", height=300)
gallery = gr.Gallery(
label="Choose Your Art Style",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
height=400
)
custom_model = gr.Textbox(
label="🔗 Or use a custom LoRA from HuggingFace",
placeholder="e.g., username/lora-name",
visible=True
)
custom_model_card = gr.HTML(visible=False)
custom_model_button = gr.Button("❌ Remove custom LoRA", visible=False)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Additional Details (optional)",
show_label=False,
lines=1,
max_lines=1,
placeholder="Describe additional details, e.g., 'wearing a red hat' or 'smiling'",
elem_id="prompt"
)
run_button = gr.Button("Generate ✨", elem_id="run_button")
result = gr.Image(label="Your Artistic Portrait", interactive=False)
reuse_button = gr.Button("🔄 Reuse this image", visible=False)
with gr.Accordion("⚙️ Advanced Settings", open=False):
lora_scale = gr.Slider(
label="Style Strength",
minimum=0,
maximum=2,
step=0.1,
value=1.0,
info="How strongly to apply the art style (1.0 = balanced)"
)
seed = gr.Slider(
label="Random Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
info="Set to 0 for random results"
)
randomize_seed = gr.Checkbox(label="🎲 Randomize seed for each generation", value=True)
guidance_scale = gr.Slider(
label="Image Guidance",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
info="How closely to follow the input image (lower = more creative)"
)
prompt_title = gr.Markdown(
value="### 🎨 Select an art style from the gallery",
visible=True,
elem_id="selected_lora",
)
# Event handlers
custom_model.input(
fn=load_custom_lora,
inputs=[custom_model],
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
)
custom_model_button.click(
fn=remove_custom_lora,
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
)
gallery.select(
fn=update_selection,
inputs=[gr_flux_loras],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_with_lora_wrapper,
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize gallery
demo.load(
fn=classify_gallery,
inputs=[gr_flux_loras],
outputs=[gallery, gr_flux_loras]
)
demo.queue(default_concurrency_limit=None)
demo.launch() |