File size: 1,368 Bytes
07d5247 058e9d8 6d70521 058e9d8 07d5247 058e9d8 4b5437e 058e9d8 07d5247 934504b 058e9d8 3183f0e 1882453 934504b 4b5437e 058e9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v4", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
def genie (prompt, scale, steps, Seed):
generator = torch.Generator(device=device).manual_seed(Seed)
images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
return images
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Slider(1, maximum=50, value=15, step=.25, label='Prompt Guidance Scale:', interactive=True),
gr.Slider(1, maximum=200, value=75, step=1, label='Number of Iterations: 50 is typically fine.'),
gr.Slider(minimum=1, step=10, maximum=9999999999, randomize=True, interactive=True)],
outputs=gr.Image(label='512x512 Generated Image'),
title="OpenJourney V4 GPU",
description="OJ V4 GPU. Ultra Fast, now running on a T4",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |