Spaces:
Running
Running
File size: 9,547 Bytes
11112c6 99cd319 d43a9ea d91dab1 0cf0d6f 11112c6 d43a9ea 11112c6 0cf0d6f d91dab1 73e6877 11112c6 d91dab1 3a2dc43 d91dab1 46a5134 d91dab1 46a5134 d91dab1 46a5134 d91dab1 11112c6 3a2dc43 d91dab1 46a5134 d91dab1 46a5134 d91dab1 46a5134 d91dab1 11112c6 0cf0d6f d91dab1 11112c6 d91dab1 0cf0d6f d91dab1 0cf0d6f 11112c6 12ffb8d 11112c6 d91dab1 0cf0d6f 12ffb8d d91dab1 12ffb8d 11112c6 12ffb8d 11112c6 0cf0d6f b27db9a 12ffb8d 841d57f 12ffb8d 4f1f3ca 7178416 11112c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import networkx as nx
import matplotlib.pyplot as plt
import jraph
import jax.numpy as jnp
from datasets import load_dataset
import spacy
import gradio as gr
import en_core_web_trf
import numpy as np
import benepar
import re
dataset = load_dataset("gigant/tib_transcripts")
nlp = en_core_web_trf.load()
benepar.download('benepar_en3')
nlp.add_pipe('benepar', config={'model': 'benepar_en3'})
def parse_tree(sentence):
stack = [] # or a `collections.deque()` object, which is a little faster
top = items = []
for token in filter(None, re.compile(r'(?:([()])|\s+)').split(sentence)):
if token == '(':
stack.append(items)
items.append([])
items = items[-1]
elif token == ')':
if not stack:
raise ValueError("Unbalanced parentheses")
items = stack.pop()
else:
items.append(token)
if stack:
raise ValueError("Unbalanced parentheses")
return top
class Tree():
def __init__(self, name, children):
self.children = children
self.name = name
self.id = None
def set_id_rec(self, id=0):
self.id = id
last_id=id
for child in self.children:
last_id = child.set_id_rec(id=last_id+1)
return last_id
def set_all_ids(self):
self.set_id_rec(0)
def print_tree(self, level=0):
to_print = f'|{"-" * level} {self.name} ({self.id})'
for child in self.children:
to_print += f"\n{child.print_tree(level + 1)}"
return to_print
def __str__(self):
return self.print_tree(0)
def get_list_nodes(self):
return [self.name] + [_ for child in self.children for _ in child.get_list_nodes()]
def rec_const_parsing(list_nodes):
if isinstance(list_nodes, list):
name, children = list_nodes[0], list_nodes[1:]
else:
name, children = list_nodes, []
return Tree(name, [rec_const_parsing(child) for i, child in enumerate(children)])
def tree_to_graph(t):
senders = []
receivers = []
for child in t.children:
senders.append(t.id)
receivers.append(child.id)
s_rec, r_rec = tree_to_graph(child)
senders.extend(s_rec)
receivers.extend(r_rec)
return senders, receivers
def construct_constituency_graph(docs):
doc = docs[0]
sent = list(doc.sents)[0]
print(sent._.parse_string)
t = rec_const_parsing(parse_tree(sent._.parse_string)[0])
t.set_all_ids()
senders, receivers = tree_to_graph(t)
nodes = t.get_list_nodes()
graphs = [{"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": {}}]
return graphs
def half_circle_layout(n_nodes, sentence_node=True):
pos = {}
for i_node in range(n_nodes - 1):
pos[i_node] = ((- np.cos(i_node * np.pi/(n_nodes - 1))), 0.5 * (-np.sin(i_node * np.pi/(n_nodes - 1))))
pos[n_nodes - 1] = (0, -0.25)
return pos
def get_adjacency_matrix(jraph_graph: jraph.GraphsTuple):
nodes, edges, receivers, senders, _, _, _ = jraph_graph
adj_mat = jnp.zeros((len(nodes), len(nodes)))
for i in range(len(receivers)):
adj_mat = adj_mat.at[senders[i], receivers[i]].set(1)
return adj_mat
def dependency_parser(sentences):
return [nlp(sentence) for sentence in sentences]
def construct_dependency_graph(docs):
"""
docs is a list of outputs of the SpaCy dependency parser
"""
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
senders = []
receivers = []
edge_labels = {}
for token in doc:
for child in token.children:
senders.append(child.i)
receivers.append(token.i)
edge_labels[(token.i, child.i)] = child.dep_
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def construct_both_graph(docs):
"""
docs is a list of outputs of the SpaCy dependency parser
"""
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
nodes.append("Sentence")
senders = [token.i for token in doc][:-1]
senders.extend([token.i for token in doc][1:])
receivers = [token.i for token in doc][1:]
receivers.extend([token.i for token in doc][:-1])
edge_labels = {(token.i, token.i + 1): "next" for token in doc[:-1]}
for token in doc[:-1]:
edge_labels[(token.i + 1, token.i)] = "previous"
for node in range(len(nodes) - 1):
senders.append(node)
receivers.append(len(nodes) - 1)
edge_labels[(node, len(nodes) - 1)] = "in"
for token in doc:
for child in token.children:
senders.append(child.i)
receivers.append(token.i)
edge_labels[(token.i, child.i)] = child.dep_
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def construct_structural_graph(docs):
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
nodes.append("Sentence")
senders = [token.i for token in doc][:-1]
senders.extend([token.i for token in doc][1:])
receivers = [token.i for token in doc][1:]
receivers.extend([token.i for token in doc][:-1])
edge_labels = {(token.i, token.i + 1): "next" for token in doc[:-1]}
for token in doc[:-1]:
edge_labels[(token.i + 1, token.i)] = "previous"
for node in range(len(nodes) - 1):
senders.append(node)
receivers.append(len(nodes) - 1)
edge_labels[(node, len(nodes) - 1)] = "in"
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def to_jraph(graph):
nodes = graph["nodes"]
s = graph["senders"]
r = graph["receivers"]
# Define a three node graph, each node has an integer as its feature.
node_features = jnp.array([0]*len(nodes))
# We will construct a graph for which there is a directed edge between each node
# and its successor. We define this with `senders` (source nodes) and `receivers`
# (destination nodes).
senders = jnp.array(s)
receivers = jnp.array(r)
# We then save the number of nodes and the number of edges.
# This information is used to make running GNNs over multiple graphs
# in a GraphsTuple possible.
n_node = jnp.array([len(nodes)])
n_edge = jnp.array([len(s)])
return jraph.GraphsTuple(nodes=node_features, senders=senders, receivers=receivers,
edges=None, n_node=n_node, n_edge=n_edge, globals=None)
def convert_jraph_to_networkx_graph(jraph_graph: jraph.GraphsTuple) -> nx.Graph:
nodes, edges, receivers, senders, _, _, _ = jraph_graph
nx_graph = nx.DiGraph()
if nodes is None:
for n in range(jraph_graph.n_node[0]):
nx_graph.add_node(n)
else:
for n in range(jraph_graph.n_node[0]):
nx_graph.add_node(n, node_feature=nodes[n])
if edges is None:
for e in range(jraph_graph.n_edge[0]):
nx_graph.add_edge(int(senders[e]), int(receivers[e]))
else:
for e in range(jraph_graph.n_edge[0]):
nx_graph.add_edge(
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
return nx_graph
def plot_graph_sentence(sentence, graph_type="constituency"):
# sentences = dataset["train"][0]["abstract"].split(".")
docs = dependency_parser([sentence])
if graph_type == "dependency":
graphs = construct_dependency_graph(docs)
elif graph_type == "structural":
graphs = construct_structural_graph(docs)
elif graph_type == "structural+dependency":
graphs = construct_both_graph(docs)
elif graph_type == "constituency":
graphs = construct_constituency_graph(docs)
g = to_jraph(graphs[0])
adj_mat = get_adjacency_matrix(g)
nx_graph = convert_jraph_to_networkx_graph(g)
pos = half_circle_layout(len(graphs[0]["nodes"]))
if graph_type == "constituency":
pos = nx.planar_layout(nx_graph)
plot = plt.figure(figsize=(12, 6))
nx.draw(nx_graph, pos=pos,
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
with_labels = True, edge_color="blue",
# connectionstyle="arc3,rad=0.1",
node_size=1000, font_color='black', node_color="yellow")
nx.draw_networkx_edge_labels(
nx_graph, pos=pos,
edge_labels=graphs[0]["edge_labels"],
font_color='red'
)
adj_mat_plot, ax = plt.subplots(figsize=(6, 6))
ax.matshow(adj_mat)
return [gr.update(value=plot), gr.update(value=adj_mat_plot)]
def get_list_sentences(id):
id = int(min(id, len(dataset["train"]) - 1))
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
with gr.Blocks() as demo:
with gr.Row():
graph_type = gr.Dropdown(label="Graph type", choices=["structural", "dependency", "structural+dependency", "constituency"], value="structural+dependency", interactive = True)
with gr.Tab("From transcript"):
with gr.Row():
with gr.Column():
id = gr.Number(label="Transcript")
with gr.Column(scale=3):
sentence_transcript = gr.Dropdown(label="Sentence", choices = dataset["train"][0]["transcript"].split(".")[1:], interactive = True)
with gr.Tab("Type sentence"):
with gr.Row():
sentence_typed = gr.Textbox(label="Sentence", interactive = True)
with gr.Row():
with gr.Column(scale=2):
plot_graph = gr.Plot(label="Word graph")
with gr.Column():
plot_adj = gr.Plot(label="Word graph adjacency matrix")
id.change(get_list_sentences, id, sentence_transcript)
sentence_transcript.change(plot_graph_sentence, [sentence_transcript, graph_type], [plot_graph, plot_adj])
sentence_typed.change(plot_graph_sentence, [sentence_typed, graph_type], [plot_graph, plot_adj])
demo.launch() |