File size: 19,279 Bytes
ff85374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""
Intelligent Tokenizer v6.2.0 - 6-Layer Decoder with Multi-Level Cross-Attention
Incorporates GPT-5 suggestions for KV cache optimization
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple
import math
class KVCacheOptimizedAttention(nn.Module):
"""
KV Cache Optimized Attention - GPT-5 suggestion
16Q β 2K/V for 8x memory reduction
"""
def __init__(self, hidden_dim: int = 1280, num_heads: int = 16, kv_compression: int = 8):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.kv_heads = max(2, num_heads // kv_compression) # 16/8 = 2 KV heads
self.head_dim = hidden_dim // num_heads # 80
# Query uses all heads
self.q_proj = nn.Linear(hidden_dim, hidden_dim) # 16 heads
# Key/Value use fewer heads (GPT-5 suggestion)
self.k_proj = nn.Linear(hidden_dim, self.kv_heads * self.head_dim) # 2 heads
self.v_proj = nn.Linear(hidden_dim, self.kv_heads * self.head_dim) # 2 heads
# Output projection
self.o_proj = nn.Linear(hidden_dim, hidden_dim)
# KV cache for inference
self.register_buffer('cached_keys', None)
self.register_buffer('cached_values', None)
def forward(self,
hidden_states: torch.Tensor,
encoder_hidden: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
use_cache: bool = False) -> Tuple[torch.Tensor, Optional[Tuple]]:
"""
Forward pass with KV cache optimization
"""
batch_size, seq_len = hidden_states.shape[:2]
# Query projection (all heads)
Q = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_heads, self.head_dim)
Q = Q.transpose(1, 2) # [batch, heads, seq, dim]
# Key/Value source (self or cross)
kv_source = encoder_hidden if encoder_hidden is not None else hidden_states
# Key/Value projection (fewer heads)
K = self.k_proj(kv_source).view(batch_size, -1, self.kv_heads, self.head_dim)
V = self.v_proj(kv_source).view(batch_size, -1, self.kv_heads, self.head_dim)
K = K.transpose(1, 2) # [batch, kv_heads, seq, dim]
V = V.transpose(1, 2)
# Repeat KV heads to match Q heads (broadcast)
K = K.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
V = V.repeat_interleave(self.num_heads // self.kv_heads, dim=1)
# Cache management for incremental generation (GPT suggestion)
if use_cache:
# For incremental generation, only process new token
if self.cached_keys is not None and hidden_states.size(1) == 1:
# Append new K/V to cache
K = torch.cat([self.cached_keys, K], dim=2)
V = torch.cat([self.cached_values, V], dim=2)
# Update cache
self.cached_keys = K
self.cached_values = V
# Scaled dot-product attention
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)
# Use additive mask (GPT suggestion)
if attention_mask is not None:
scores = scores + attention_mask # additive mask: -inf where masked, 0 elsewhere
attn_weights = F.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, V)
# Reshape and project
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.hidden_dim)
output = self.o_proj(attn_output)
return output, (K, V) if use_cache else None
class SelectiveCrossAttention(nn.Module):
"""
Selective cross-attention - only attend to relevant encoder layers
Reduces 24 β 8 cross-attentions for efficiency
"""
def __init__(self, hidden_dim: int = 1280, layer_id: int = 0):
super().__init__()
self.hidden_dim = hidden_dim
self.layer_id = layer_id
# Define which encoder layers this decoder layer should attend to
self.encoder_connections = {
0: [0], # Decoder L0 β Encoder L0 (byte info)
1: [0], # Decoder L1 β Encoder L0 (byte info)
2: [1, 2], # Decoder L2 β Encoder L1,2 (language info)
3: [1, 2], # Decoder L3 β Encoder L1,2 (language info)
4: [3], # Decoder L4 β Encoder L3 (semantic info)
5: [3], # Decoder L5 β Encoder L3 (semantic info)
}
# Get connections for this layer
self.connected_layers = self.encoder_connections.get(layer_id, [0])
# Create attention modules only for connected layers
self.cross_attentions = nn.ModuleList([
KVCacheOptimizedAttention(hidden_dim, num_heads=16, kv_compression=8)
for _ in self.connected_layers
])
# Lightweight fusion with weighted sum (GPT suggestion)
self.fusion = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.SiLU(),
nn.Dropout(0.1)
)
# Learnable weights for connected layers only
self.layer_weights = nn.Parameter(torch.ones(len(self.connected_layers)) / len(self.connected_layers))
def forward(self,
decoder_hidden: torch.Tensor,
encoder_all_hidden: List[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Selectively attend to relevant encoder layers only
"""
# Only attend to connected encoder layers
cross_outputs = []
for i, layer_idx in enumerate(self.connected_layers):
if layer_idx < len(encoder_all_hidden):
encoder_hidden = encoder_all_hidden[layer_idx]
cross_out, _ = self.cross_attentions[i](
hidden_states=decoder_hidden,
encoder_hidden=encoder_hidden,
attention_mask=attention_mask
)
cross_outputs.append(cross_out)
# Weighted sum fusion for connected layers only
if len(cross_outputs) > 1:
weighted_outputs = torch.stack(cross_outputs, dim=0) # [N, batch, seq, hidden]
weights = F.softmax(self.layer_weights, dim=0).view(-1, 1, 1, 1)
fused = (weighted_outputs * weights).sum(dim=0) # [batch, seq, hidden]
else:
# Single connection - no fusion needed
fused = cross_outputs[0] if cross_outputs else decoder_hidden
# Apply lightweight fusion layer
fused = self.fusion(fused)
return fused
class SwiGLU(nn.Module):
"""SwiGLU activation for better convergence (GPT suggestion)"""
def __init__(self, dim: int, mult: float = 2.66):
super().__init__()
inner = int(round(dim * mult / 2)) * 2 # Even alignment
self.w1 = nn.Linear(dim, inner // 2)
self.w2 = nn.Linear(dim, inner // 2)
self.w3 = nn.Linear(inner // 2, dim)
def forward(self, x):
return self.w3(F.silu(self.w1(x)) * self.w2(x))
class DecoderLayer(nn.Module):
"""
Single decoder layer with self-attention and selective cross-attention
"""
def __init__(self, hidden_dim: int = 1280, num_heads: int = 16, layer_id: int = 0):
super().__init__()
self.hidden_dim = hidden_dim
self.layer_id = layer_id
# Self-attention (with KV cache optimization)
self.self_attn = KVCacheOptimizedAttention(hidden_dim, num_heads, kv_compression=8)
self.self_attn_norm = nn.LayerNorm(hidden_dim)
# Selective cross-attention to specific encoder layers
self.cross_attn = SelectiveCrossAttention(hidden_dim, layer_id=layer_id)
self.cross_attn_norm = nn.LayerNorm(hidden_dim)
# Feed-forward network with SwiGLU (GPT suggestion)
self.ffn = SwiGLU(hidden_dim, mult=2.66)
self.ffn_norm = nn.LayerNorm(hidden_dim)
# Dropout for residual connections
self.dropout = nn.Dropout(0.1)
def forward(self,
hidden_states: torch.Tensor,
encoder_all_hidden: List[torch.Tensor],
self_attention_mask: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
use_cache: bool = False) -> Tuple[torch.Tensor, Optional[Tuple]]:
"""
Forward pass through decoder layer
"""
# Self-attention with residual
residual = hidden_states
hidden_states = self.self_attn_norm(hidden_states)
self_attn_out, cache = self.self_attn(
hidden_states,
attention_mask=self_attention_mask,
use_cache=use_cache
)
hidden_states = residual + self.dropout(self_attn_out)
# Cross-attention with residual
residual = hidden_states
hidden_states = self.cross_attn_norm(hidden_states)
cross_attn_out = self.cross_attn(
hidden_states,
encoder_all_hidden,
attention_mask=cross_attention_mask
)
hidden_states = residual + self.dropout(cross_attn_out)
# FFN with residual
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
ffn_out = self.ffn(hidden_states)
hidden_states = residual + self.dropout(ffn_out)
return hidden_states, cache
class DecoderV62(nn.Module):
"""
6-Layer Decoder with Multi-Level Cross-Attention
Reduced from 8 layers but compensated with better cross-attention
"""
def __init__(self, config: Optional[Dict] = None):
super().__init__()
# Configuration
self.hidden_dim = 1280
self.num_heads = 16
self.num_layers = 6 # Reduced from 8
self.vocab_size = 260 # 256 bytes + special tokens
self.max_seq_len = 48
# Token constants (GPT suggestion - explicit constants)
self.PAD = 256
self.BOS = 257
self.EOS = 258
self.MASK = 259
# Token embedding and position encoding
self.token_embedding = nn.Embedding(self.vocab_size, self.hidden_dim)
self.position_embedding = nn.Embedding(self.max_seq_len, self.hidden_dim)
# 6 decoder layers with layer-specific cross-attention
self.layers = nn.ModuleList([
DecoderLayer(self.hidden_dim, self.num_heads, layer_id=i)
for i in range(self.num_layers)
])
# Output projection
self.output_norm = nn.LayerNorm(self.hidden_dim)
self.output_projection = nn.Linear(self.hidden_dim, self.vocab_size)
# Monitoring (GPT-5 suggestion)
# Track importance of ENCODER layers (4) used by decoder
self.register_buffer('layer_importance', torch.zeros(4)) # Track importance of 4 encoder layers
def forward(self,
encoder_all_hidden: List[torch.Tensor],
decoder_input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
past_key_values: Optional[List] = None) -> Dict[str, torch.Tensor]:
"""
Forward pass through decoder
Args:
encoder_all_hidden: All encoder layer outputs (4 layers)
decoder_input_ids: Input token IDs for teacher forcing
attention_mask: Attention mask
use_cache: Whether to cache KV for inference
past_key_values: Cached KV from previous steps
"""
batch_size = encoder_all_hidden[0].size(0)
device = encoder_all_hidden[0].device
# If no decoder input, start with compressed representation
if decoder_input_ids is None:
# Use encoder's final compressed output as starting point
hidden_states = encoder_all_hidden[-1] # [batch, M tokens, 1280]
seq_len = hidden_states.size(1)
else:
# Teacher forcing mode: use provided tokens
seq_len = decoder_input_ids.size(1)
# Embeddings
token_embeds = self.token_embedding(decoder_input_ids)
position_ids = torch.arange(seq_len, device=device).expand(batch_size, -1)
position_embeds = self.position_embedding(position_ids)
hidden_states = token_embeds + position_embeds
# Create causal mask for self-attention (additive mask - GPT suggestion)
causal_mask = torch.full((1, 1, seq_len, seq_len), float('-inf'), device=device)
causal_mask = torch.triu(causal_mask, diagonal=1) # [1, 1, seq, seq]
# Pass through decoder layers
all_hidden_states = []
all_caches = [] if use_cache else None
for i, layer in enumerate(self.layers):
# GPT final check: Create proper cross-attention mask for encoder hidden states
if encoder_all_hidden is not None and len(encoder_all_hidden) > 0:
S_enc = encoder_all_hidden[0].size(1) # Encoder sequence length
# Create additive mask (0 = attend, -inf = mask)
cross_mask = torch.zeros((batch_size, 1, 1, S_enc), device=hidden_states.device)
else:
cross_mask = None
hidden_states, cache = layer(
hidden_states,
encoder_all_hidden,
self_attention_mask=causal_mask,
cross_attention_mask=cross_mask, # Use proper cross mask
use_cache=use_cache
)
all_hidden_states.append(hidden_states)
if use_cache:
all_caches.append(cache)
# Final output projection
hidden_states = self.output_norm(hidden_states)
logits = self.output_projection(hidden_states)
# Update monitoring: track encoder layer importance
# (This would be computed based on cross-attention weights in practice)
with torch.no_grad():
# Simplified: assume equal importance for now
self.layer_importance = torch.tensor([0.25, 0.25, 0.25, 0.25])
outputs = {
'logits': logits,
'last_hidden_state': hidden_states,
'all_hidden_states': all_hidden_states,
'encoder_layer_importance': self.layer_importance
}
if use_cache:
outputs['past_key_values'] = all_caches
return outputs
def generate(self,
encoder_all_hidden: List[torch.Tensor],
max_length: int = 48,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 0.95) -> torch.Tensor:
"""
Autoregressive generation
"""
batch_size = encoder_all_hidden[0].size(0)
device = encoder_all_hidden[0].device
# Start with BOS token
generated = torch.full((batch_size, 1), self.BOS, device=device)
# Generate tokens one by one
past_key_values = None
for _ in range(max_length - 1):
# GPT optimization: Only pass last token for O(T) complexity
if past_key_values is not None:
decoder_input = generated[:, -1:] # Last token only
else:
decoder_input = generated # Full sequence for first step
outputs = self.forward(
encoder_all_hidden,
decoder_input_ids=decoder_input,
use_cache=True,
past_key_values=past_key_values
)
logits = outputs['logits'][:, -1, :] / temperature
# Top-k filtering
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = float('-inf')
# Top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = float('-inf')
# Sample
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append to generated sequence
generated = torch.cat([generated, next_token], dim=1)
# Check for EOS
if (next_token == self.EOS).all():
break
past_key_values = outputs.get('past_key_values')
return generated
def get_memory_usage(self) -> Dict[str, float]:
"""
Calculate memory usage with KV cache optimization (GPT-5 metric)
"""
# Standard attention: 16 heads for K and V
standard_kv_memory = 2 * 16 * self.max_seq_len * 80 * 4 # bytes
# Optimized: 2 heads for K and V
optimized_kv_memory = 2 * 2 * self.max_seq_len * 80 * 4 # bytes
return {
'standard_kv_mb': standard_kv_memory / (1024 * 1024),
'optimized_kv_mb': optimized_kv_memory / (1024 * 1024),
'reduction_ratio': standard_kv_memory / optimized_kv_memory,
'total_params_m': sum(p.numel() for p in self.parameters()) / 1e6
}
if __name__ == "__main__":
# Test the decoder
decoder = DecoderV62()
# Simulate encoder outputs (4 layers, 6 tokens each)
batch_size = 2
num_tokens = 6 # After progressive splitting
hidden_dim = 1280
encoder_outputs = [
torch.randn(batch_size, num_tokens, hidden_dim)
for _ in range(4)
]
# Test with teacher forcing
decoder_input = torch.randint(0, 256, (batch_size, 48))
output = decoder(encoder_outputs, decoder_input_ids=decoder_input)
print(f"Decoder output shape: {output['logits'].shape}")
print(f"Encoder layer importance: {output['encoder_layer_importance']}")
# Test generation
generated = decoder.generate(encoder_outputs, max_length=48)
print(f"Generated shape: {generated.shape}")
# Memory usage
memory_stats = decoder.get_memory_usage()
print(f"Memory optimization: {memory_stats['reduction_ratio']:.1f}x reduction")
print(f"Total parameters: {memory_stats['total_params_m']:.1f}M") |