Spaces:
Paused
Paused
File size: 11,253 Bytes
5ac8e66 8d4b8e2 5ac8e66 145c0a2 5ac8e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# -*- coding: utf-8 -*-
#!pip install gradio
#!pip install -U sentence-transformers
#!pip install langchain
#!pip install openai
#!pip install -U chromadb
import gradio as gr
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from langchain.llms import OpenAI
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain import LLMMathChain, SQLDatabase, SQLDatabaseChain, LLMChain
from langchain.agents import initialize_agent, Tool
# import sqlite3
import pandas as pd
import json
import chromadb
import os
# cxn = sqlite3.connect('./data/mbr.db')
"""# import models"""
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
"""# setup vector db
- chromadb
- https://docs.trychroma.com/getting-started
"""
from chromadb.config import Settings
chroma_client = chromadb.Client(settings=Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="./data/mychromadb/" # Optional, defaults to .chromadb/ in the current directory
))
#!ls ./data/mychromadb/
#collection = chroma_client.create_collection(name="benefit_collection")
collection = chroma_client.get_collection(name="healthy_opt_collection", embedding_function=bi_encoder)
"""### vector db search examples"""
def rtrv(qry,top_k=8):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
)
return results
def vdb_qry(qry,top_k=8):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
include=["metadatas", "documents", "distances","embeddings"]
)
rslt_pd = pd.DataFrame(results ).explode(['ids','documents', 'metadatas', 'distances', 'embeddings'])
rslt_fmt = pd.concat([rslt_pd.drop(['metadatas'], axis=1), rslt_pd['metadatas'].apply(pd.Series)], axis=1 )
return rslt_fmt
# qry = 'what should I do with my old card'
# rslt_fmt = vdb_qry(qry, top_k=10)
# rslt_fmt
# doc_lst = rslt_fmt[['documents']].values.tolist()
# len(doc_lst)
## important to do this if you want to save the data for re-use
# chroma_client.persist()
"""# Introduction
- example of the kind of question answering that is possible with this tool
- assumes we are answering for a member with a Healthy Options Card
*When will I get my card?*
# semantic search functions
"""
## choosing not to use rerank for this use case
def rernk(query, collection=collection, top_k=8, top_n = 4):
rtrv_rslts = rtrv(query, top_k=top_k)
rtrv_ids = rtrv_rslts.get('ids')[0]
rtrv_docs = rtrv_rslts.get('documents')[0]
##### Re-Ranking #####
cross_inp = [[query, doc] for doc in rtrv_docs]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
combined = list(zip(rtrv_ids, list(cross_scores)))
sorted_tuples = sorted(combined, key=lambda x: x[1], reverse=True)
sorted_ids = [t[0] for t in sorted_tuples[:top_n]]
predictions = collection.get(ids=sorted_ids, include=["documents","metadatas"])
return predictions
# #return cross_scores
def get_text_fmt(qry):
prediction_text = []
predictions = rernk(qry, collection=collection, top_k=8, top_n = 4)
docs = predictions['documents']
meta = predictions['metadatas']
for i in range(len(docs)):
result = Document(page_content=docs[i], metadata=meta[i])
prediction_text.append(result)
return prediction_text
# get_text_fmt('can I buy fish?')
"""# LLM based qa functions"""
llm = OpenAI(temperature=0)
# default model
# model_name: str = "text-davinci-003"
# instruction fine-tuned, sometimes referred to as GPT-3.5
template = """You are a friendly AI assistant for the insurance company Humana.
Given the following extracted parts of a long document and a question, create a succinct final answer.
The healthy options card can be used to purchase several categories of items.
If the requested item can be logically included in one of the approved categories, then card can be used to purchase that item even if the requested item is not specifically mentioned in the document.
If possible provide a definitive yes or no type answer, with the most specific supporting supporting statement available from the documents.
If you find a similar question has already been answered in the document respond with the previously documented answer.
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
If the question is not about Humana Healthy Options or what you can buy with the card or Bill Pay, politely inform the user that you are only able answer questions about Humana Healthy Options.
QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER:"""
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])
chain_qa = load_qa_with_sources_chain(llm=llm, chain_type="stuff", prompt=PROMPT, verbose=False)
def get_llm_response(message):
mydocs = get_text_fmt(message)
responses = chain_qa({"input_documents":mydocs, "question":message})
return responses
# rslt = get_llm_response('can I buy shrimp?')
# rslt['output_text']
# for d in rslt['input_documents']:
# print(d.page_content)
# print(d.metadata['url'])
# rslt['output_text']
"""# Database query"""
# db = SQLDatabase.from_uri("sqlite:///./data/mbr.db")
# db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True, return_intermediate_steps=True)
# def db_qry(qry):
# responses = db_chain('my mbr_id is 456 ;'+str(qry) ) ############### hardcode mbr id 456 for demo
# return responses
# r = db_qry('how many footcare visits have I had?')
# r['intermediate_steps']
"""# Math
- default version
"""
# llm_math_chain = LLMMathChain(llm=llm, verbose=True)
# llm_math_chain.run('what is the square root of 49?')
"""# Greeting"""
template = """You are an AI assistant for the insurance company Humana.
Your name is Jarvis and you were created on February 13, 2020.
Offer polite, friendly greetings and brief small talk.
Respond to thanks with, 'Glad to help.'
If the question is not about Humana, politely guide the user to ask questions about Humana Healthy Options benefits.
QUESTION: {question}
=========
FINAL ANSWER:"""
greet_prompt = PromptTemplate(template=template, input_variables=["question"])
greet_llm = LLMChain(prompt=greet_prompt, llm=llm, verbose=False)
# greet_llm.run('will it snow in Lousiville tomorrow')
# greet_llm.run('Thanks, that was great')
"""# MRKL Chain"""
def get_cot(r):
cot = '<p>'
try:
intermedObj = r['intermediate_steps']
cot +='<b>Input:</b> '+r['input']+'<br>'
for agnt_action, obs in intermedObj:
al = '<br> '.join(agnt_action.log.split('\n') )
cot += '<b>AI chain of thought:</b> '+ al +'<br>'
if type(obs) is dict:
if obs.get('input_documents') is not None:
for d in obs['input_documents']:
cot += ' '+'<i>- '+str(d.page_content)+'</i>'+' <a href="'+ str(d.metadata['url']) +'">'+str(d.metadata['page'])+'</a> '+'<br>'
cot += '<b>Observation:</b> '+str(obs['output_text']) +'<br><br>'
elif obs.get('intermediate_steps') is not None:
cot += '<b>Query:</b> '+str(obs.get('intermediate_steps')) +'<br><br>'
else:
pass
else:
cot += '<b>Observation:</b> '+str(obs) +'<br><br>'
except:
pass
cot += '</p>'
return cot
tools = [
Tool(
name = "Benefit",
func=get_llm_response,
description='''Useful for confirming what specific items can be bought or paid for with the healthy options card.
Useful for confirming what bills can be paid with healthy options bill pay.
Useful for when you need to answer questions about healthy options allowance.
The input to this tool should be the original question originally asked of the agent without an changes.
''',
return_direct=False
),
# Tool(
# name="Calculator",
# func=llm_math_chain.run,
# description="useful for when you need to answer questions about math"
# ),
# Tool(
# name="Member DB",
# func=db_qry,
# description='''useful for when you need to answer questions about member details such their name, id and accumulated use of services.
# This tool shows how much a benfit has already been consumed.
# Input should be in the form of a question containing full context'''
# ),
Tool(
name="Greeting",
func=greet_llm.run,
description="useful for when you need to respond to greetings, thanks, make small talk or answer questions about yourself",
return_direct=False ## don't do further LLM call after this response if True
),
]
mrkl = initialize_agent(tools, llm, agent="zero-shot-react-description",
verbose=False,
return_intermediate_steps=True,
max_iterations=5,
early_stopping_method="generate")
def mrkl_rspnd(qry):
response = mrkl({"input":str(qry) })
return response
# r = mrkl_rspnd("can I buy fish with the card?")
# print(r['output'])
# print(json.dumps(r['intermediate_steps'], indent=2))
#r['intermediate_steps']
# r.keys()
# from IPython.core.display import display, HTML
"""# chat example"""
def chat(message, history):
history = history or []
message = message.lower()
response = mrkl_rspnd(message)
cot = get_cot(response)
history.append((message, response['output']))
return history, history, cot
css=".gradio-container {background-color: lightgray}"
xmpl_list = ["How do I activate my spending account card?",
"Can I use my card for copays at the doctor?",
"Can I buy meat with this card?",
"Can I buy vitamins?",
"Can I use this card to pay for Uber?"]
with gr.Blocks(css=css) as demo:
history_state = gr.State()
response_state = gr.State()
gr.Markdown('# Healthy Options QA')
title='Benefit Chatbot'
description='chatbot with search on Health Benefits'
with gr.Row():
chatbot = gr.Chatbot()
# with gr.Row():
with gr.Accordion(label='Show AI chain of thought: ', open=False,):
ai_cot = gr.HTML(show_label=False)
with gr.Row():
message = gr.Textbox(label='Input your question here:',
placeholder='What is the name of the plan described by this summary of benefits?',
lines=1)
submit = gr.Button(value='Send',
variant='secondary').style(full_width=False)
submit.click(chat,
inputs=[message, history_state],
outputs=[chatbot, history_state, ai_cot])
gr.Examples(
examples=xmpl_list,
inputs=message
)
demo.launch()
|