File size: 11,253 Bytes
5ac8e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d4b8e2
5ac8e66
145c0a2
5ac8e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-

#!pip install gradio
#!pip install -U sentence-transformers
#!pip install langchain
#!pip install openai
#!pip install -U chromadb

import gradio as gr
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from langchain.llms import OpenAI
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain import LLMMathChain, SQLDatabase, SQLDatabaseChain, LLMChain
from langchain.agents import initialize_agent, Tool

# import sqlite3
import pandas as pd
import json

import chromadb
import os

# cxn = sqlite3.connect('./data/mbr.db')

"""# import models"""

bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256     #Truncate long passages to 256 tokens

#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')

"""# setup vector db
- chromadb
- https://docs.trychroma.com/getting-started
"""

from chromadb.config import Settings

chroma_client = chromadb.Client(settings=Settings(
    chroma_db_impl="duckdb+parquet",
    persist_directory="./data/mychromadb/" # Optional, defaults to .chromadb/ in the current directory
))

#!ls ./data/mychromadb/
#collection = chroma_client.create_collection(name="benefit_collection")
collection = chroma_client.get_collection(name="healthy_opt_collection", embedding_function=bi_encoder)

"""### vector db search examples"""

def rtrv(qry,top_k=8):
  results = collection.query(
    query_embeddings=[ bi_encoder.encode(qry) ],
    n_results=top_k,
    )
  return results

def vdb_qry(qry,top_k=8):
  results = collection.query(
    query_embeddings=[ bi_encoder.encode(qry) ],
    n_results=top_k,
    include=["metadatas", "documents", "distances","embeddings"]
    )
  rslt_pd = pd.DataFrame(results ).explode(['ids','documents', 'metadatas', 'distances', 'embeddings'])
  rslt_fmt = pd.concat([rslt_pd.drop(['metadatas'], axis=1), rslt_pd['metadatas'].apply(pd.Series)], axis=1 )
  return rslt_fmt

# qry = 'what should I do with my old card'
# rslt_fmt = vdb_qry(qry, top_k=10)
# rslt_fmt

# doc_lst = rslt_fmt[['documents']].values.tolist()
# len(doc_lst)

## important to do this if you want to save the data for re-use
# chroma_client.persist()

"""# Introduction
- example of the kind of question answering that is possible with this tool
- assumes we are answering for a member with a Healthy Options Card

*When will I get my card?*

# semantic search functions
"""

## choosing not to use rerank for this use case

def rernk(query, collection=collection, top_k=8, top_n = 4):
  rtrv_rslts = rtrv(query, top_k=top_k)
  rtrv_ids = rtrv_rslts.get('ids')[0]
  rtrv_docs = rtrv_rslts.get('documents')[0]

  ##### Re-Ranking #####
  cross_inp = [[query, doc] for doc in rtrv_docs]
  cross_scores = cross_encoder.predict(cross_inp)

  # Sort results by the cross-encoder scores
  combined = list(zip(rtrv_ids, list(cross_scores)))
  sorted_tuples = sorted(combined, key=lambda x: x[1], reverse=True)
  sorted_ids = [t[0] for t in sorted_tuples[:top_n]]
  predictions = collection.get(ids=sorted_ids, include=["documents","metadatas"])
  return predictions
#   #return cross_scores

def get_text_fmt(qry):
  prediction_text = []
  predictions = rernk(qry, collection=collection, top_k=8, top_n = 4)
  docs = predictions['documents']
  meta = predictions['metadatas']
  for i in range(len(docs)):
    result = Document(page_content=docs[i], metadata=meta[i]) 
    prediction_text.append(result)
  return prediction_text

# get_text_fmt('can I buy fish?')

"""# LLM based qa functions"""

llm = OpenAI(temperature=0)
# default model
# model_name: str = "text-davinci-003"
# instruction fine-tuned, sometimes referred to as GPT-3.5

template = """You are a friendly AI assistant for the insurance company Humana. 
Given the following extracted parts of a long document and a question, create a succinct final answer. 
The healthy options card can be used to purchase several categories of items.
If the requested item can be logically included in one of the approved categories, then card can be used to purchase that item even if the requested item is not specifically mentioned in the document.
If possible provide a definitive yes or no type answer, with the most specific supporting supporting statement available from the documents.
If you find a similar question has already been answered in the document respond with the previously documented answer.
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
If the question is not about Humana Healthy Options or what you can buy with the card or Bill Pay, politely inform the user that you are only able answer questions about Humana Healthy Options.
QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER:"""
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])

chain_qa = load_qa_with_sources_chain(llm=llm, chain_type="stuff", prompt=PROMPT, verbose=False)

def get_llm_response(message):
  mydocs = get_text_fmt(message)
  responses = chain_qa({"input_documents":mydocs, "question":message})
  return responses

# rslt = get_llm_response('can I buy shrimp?')
# rslt['output_text']

# for d in rslt['input_documents']:
#   print(d.page_content)
#   print(d.metadata['url'])

# rslt['output_text']

"""# Database query"""

# db = SQLDatabase.from_uri("sqlite:///./data/mbr.db")

# db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True, return_intermediate_steps=True)

# def db_qry(qry):
  # responses = db_chain('my mbr_id is 456 ;'+str(qry) ) ############### hardcode mbr id 456 for demo
  # return responses

# r = db_qry('how many footcare visits have I had?')
# r['intermediate_steps']

"""# Math
- default version
"""

# llm_math_chain = LLMMathChain(llm=llm, verbose=True)

# llm_math_chain.run('what is the square root of 49?')

"""# Greeting"""

template = """You are an AI assistant for the insurance company Humana. 
Your name is Jarvis and you were created on February 13, 2020.
Offer polite, friendly greetings and brief small talk.
Respond to thanks with, 'Glad to help.'
If the question is not about Humana, politely guide the user to ask questions about Humana Healthy Options benefits.
QUESTION: {question}
=========
FINAL ANSWER:"""
greet_prompt = PromptTemplate(template=template, input_variables=["question"])

greet_llm = LLMChain(prompt=greet_prompt, llm=llm, verbose=False)

# greet_llm.run('will it snow in Lousiville tomorrow')

# greet_llm.run('Thanks, that was great')

"""# MRKL Chain"""

def get_cot(r):
  cot = '<p>'
  try:
    intermedObj = r['intermediate_steps']
    cot +='<b>Input:</b> '+r['input']+'<br>'
    for agnt_action, obs in intermedObj:
      al = '<br>  '.join(agnt_action.log.split('\n') )
      cot += '<b>AI chain of thought:</b> '+ al +'<br>'
      if type(obs) is dict:
        if obs.get('input_documents') is not None: 
          for d in obs['input_documents']:
            cot += '&nbsp;&nbsp;&nbsp;&nbsp;'+'<i>- '+str(d.page_content)+'</i>'+' <a href="'+ str(d.metadata['url']) +'">'+str(d.metadata['page'])+'</a> '+'<br>'
          cot += '<b>Observation:</b> '+str(obs['output_text']) +'<br><br>'
        elif obs.get('intermediate_steps') is not None:
          cot += '<b>Query:</b> '+str(obs.get('intermediate_steps')) +'<br><br>'
        else:  
          pass 
      else:
        cot += '<b>Observation:</b> '+str(obs) +'<br><br>'
  except:
    pass
  cot += '</p>'  
  return cot               
tools = [
    Tool(
        name = "Benefit",
        func=get_llm_response,
        description='''Useful for confirming what specific items can be bought or paid for with the healthy options card. 
        Useful for confirming what bills can be paid with healthy options bill pay.
        Useful for when you need to answer questions about healthy options allowance.  
        The input to this tool should be the original question originally asked of the agent without an changes.
        ''',
        return_direct=False
    ),
    # Tool(
    #     name="Calculator",
    #     func=llm_math_chain.run,
    #     description="useful for when you need to answer questions about math"
    # ),
    # Tool(
    #     name="Member DB",
    #     func=db_qry,
    #     description='''useful for when you need to answer questions about member details such their name, id and accumulated use of services. 
    #     This tool shows how much a benfit has already been consumed. 
    #     Input should be in the form of a question containing full context'''
    # ),
    Tool(
        name="Greeting",
        func=greet_llm.run,
        description="useful for when you need to respond to greetings, thanks, make small talk or answer questions about yourself",
        return_direct=False ## don't do further LLM call after this response if True                                                  
    ),
]

mrkl = initialize_agent(tools, llm, agent="zero-shot-react-description", 
                        verbose=False, 
                        return_intermediate_steps=True, 
                        max_iterations=5, 
                        early_stopping_method="generate")

def mrkl_rspnd(qry):
  response = mrkl({"input":str(qry) })
  return response

# r = mrkl_rspnd("can I buy fish with the card?")
# print(r['output'])

# print(json.dumps(r['intermediate_steps'], indent=2))

#r['intermediate_steps']

# r.keys()

# from IPython.core.display import display, HTML



"""# chat example"""

def chat(message, history):
  history = history or []
  message = message.lower()
  
  response = mrkl_rspnd(message)
  cot = get_cot(response)
  history.append((message, response['output']))
  return history, history, cot

css=".gradio-container {background-color: lightgray}"

xmpl_list = ["How do I activate my spending account card?",
                      "Can I use my card for copays at the doctor?",
                      "Can I buy meat with this card?",
                      "Can I buy vitamins?",
                      "Can I use this card to pay for Uber?"]

with gr.Blocks(css=css) as demo:
  history_state = gr.State()
  response_state = gr.State()
  gr.Markdown('# Healthy Options QA')
  title='Benefit Chatbot'
  description='chatbot with search on Health Benefits'
  with gr.Row():
    chatbot = gr.Chatbot()
  # with gr.Row():
  with gr.Accordion(label='Show AI chain of thought: ', open=False,):
    ai_cot = gr.HTML(show_label=False)
  with gr.Row():
    message = gr.Textbox(label='Input your question here:',
                         placeholder='What is the name of the plan described by this summary of benefits?',
                         lines=1)
    submit = gr.Button(value='Send',
                       variant='secondary').style(full_width=False)
  submit.click(chat,
               inputs=[message, history_state],
               outputs=[chatbot, history_state, ai_cot])
  gr.Examples(
            examples=xmpl_list,
            inputs=message
        )

demo.launch()