Spaces:
Running
Running
File size: 8,756 Bytes
12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 8bdf52a 12761b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
#%%
import argparse
import os
import gradio as gr
import matplotlib.pyplot as plt
import pkg_resources
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq
import pandas as pd
from dash_bio import Clustergram
seq = get_seq()
genename_to_uniprot = get_genename_to_uniprot()
lddt = get_lddt()
import sys
from glob import glob
import numpy as np
from atac_rna_data_processing.config.load_config import load_config
from atac_rna_data_processing.io.celltype import GETCellType
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
from proscope.af2 import AFPairseg
from proscope.protein import Protein
from proscope.viewer import view_pdb_html
#%%
args = argparse.ArgumentParser()
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
args.add_argument("-s", "--share", action="store_true", help="Share on network")
args.add_argument("-d", "--data", type=str, default="/data", help="Data directory")
# args = args.parse_args()
# set pseudo args
args = args.parse_args(['-p', '7869', '-s', '-d', '/manitou/pmg/users/xf2217/demo_data'])
#%%
gene_pairs = glob(f"{args.data}/structures/causal/*")
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
GET_CONFIG = load_config('/manitou/pmg/users/xf2217/atac_rna_data_processing/atac_rna_data_processing/config/GET')
GET_CONFIG.celltype.jacob=True
GET_CONFIG.celltype.num_cls=2
GET_CONFIG.celltype.input=True
GET_CONFIG.celltype.embed=True
GET_CONFIG.celltype.data_dir = '/manitou/pmg/users/xf2217/pretrain_human_bingren_shendure_apr2023/fetal_adult/'
GET_CONFIG.celltype.interpret_dir='/manitou/pmg/users/xf2217/Interpretation_all_hg38_allembed_v4_natac/'
GET_CONFIG.motif_dir = '/manitou/pmg/users/xf2217/interpret_natac/motif-clustering'
motif = NrMotifV1.load_from_pickle(
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
GET_CONFIG.motif_dir
)
cell_type_annot = pd.read_csv(GET_CONFIG.celltype.data_dir.split('fetal_adult')[0] + 'data/cell_type_pretrain_human_bingren_shendure_apr2023.txt')
cell_type_id_to_name = dict(zip(cell_type_annot['id'], cell_type_annot['celltype']))
cell_type_name_to_id = dict(zip(cell_type_annot['celltype'], cell_type_annot['id']))
avaliable_celltypes = sorted([cell_type_id_to_name[f.split('/')[-1]] for f in glob(GET_CONFIG.celltype.interpret_dir+'*')])
#%%
# fill this in...
# set plot ppi to 100
plt.rcParams['figure.dpi'] = 100
def visualize_AF2(tf_pair, a):
strcture_dir = f"{args.data}/structures/causal/{tf_pair}"
fasta_dir = f"{args.data}/sequences/causal/{tf_pair}"
if not os.path.exists(strcture_dir):
gr.ErrorText("No such gene pair")
a = AFPairseg(strcture_dir, fasta_dir)
segpair.choices = list(a.pairs_data.keys())
fig1, ax1 = a.plot_plddt_gene1()
fig2, ax2 = a.plot_plddt_gene2()
fig3, ax3 = a.protein1.plot_plddt()
fig4, ax4 = a.protein2.plot_plddt()
fig5, ax5 = a.plot_score_heatmap()
plt.tight_layout()
new_dropdown = update_dropdown(list(a.pairs_data.keys()), 'Segment pair')
return fig1, fig2, fig3, fig4, fig5, new_dropdown, a
def view_pdb(seg_pair, a):
pdb_path = a.pairs_data[seg_pair].pdb
return view_pdb_html(pdb_path), a, pdb_path
def update_dropdown(x, label):
return gr.Dropdown.update(choices=x, label=label)
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
celltype_id = cell_type_name_to_id[celltype_name]
cell = GETCellType(celltype_id, GET_CONFIG)
cell.celltype_name = celltype_name
gene_exp_fig = cell.plotly_gene_exp()
gene_exp_table = cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index()
return gene_exp_fig, gene_exp_table, cell
def plot_gene_regions(cell, gene_name, plotly=True):
return cell.plot_gene_regions(gene_name, plotly=plotly), cell
def plot_gene_motifs(cell, gene_name, motif, overwrite=False):
return cell.plot_gene_motifs(gene_name, motif, overwrite=overwrite)[0], cell
def plot_motif_subnet(cell, motif_collection, m, type='neighbors', threshold=0.1):
return cell.plotly_motif_subnet(motif_collection, m, type=type, threshold=threshold), cell
def plot_gene_exp(cell, plotly=True):
return cell.plotly_gene_exp(plotly=plotly), cell
def plot_motif_corr(cell):
fig = Clustergram(data=cell.gene_by_motif.corr,
column_labels=list(cell.gene_by_motif.corr.columns.values),
row_labels=list(cell.gene_by_motif.corr.index),
hidden_labels=['row', 'col'],
link_method='average',
display_ratio=0.1,
width=600,
height=400,
color_map='rdbu_r',
)
return fig, cell
#%%
# fill this in...
# main
if __name__ == '__main__':
with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
seg_pairs = gr.State([''])
af = gr.State(None)
cell = gr.State(None)
with gr.Row() as row:
# Left column: Plot gene expression and gene regions
with gr.Column():
with gr.Row() as row:
celltype_name = gr.Dropdown(label='Cell Type', choices=avaliable_celltypes)
celltype_btn = gr.Button(value='Load & Plot Gene Expression')
gene_exp_plot = gr.Plot(label='Gene Expression Pred vs Obs')
gene_exp_table = gr.DataFrame(label='Gene Expression Table', max_rows=10)
# Right column: Plot gene motifs
with gr.Column():
gene_name_for_region = gr.Textbox(label='Get important regions or motifs for gene:')
with gr.Row() as row:
region_plot_btn = gr.Button(value='Regions')
motif_plot_btn = gr.Button(value='Motifs')
region_plot = gr.Plot(label='Gene Regions')
motif_plot = gr.Plot(label='Gene Motifs')
with gr.Row() as row:
with gr.Column():
clustergram_btn = gr.Button(value='Plot Motif Correlation Heatmap')
clustergram_plot = gr.Plot(label='Motif Correlation')
# Right column: Motif subnet plot
with gr.Column():
with gr.Row() as row:
motif_for_subnet = gr.Dropdown(label='Motif Causal Subnetwork', choices=motif.cluster_names)
subnet_type = gr.Dropdown(label='Type', choices=['neighbors', 'parents', 'children'], default='neighbors')
# slider for threshold 0.01-0.2
subnet_threshold = gr.Slider(label='Threshold', minimum=0.01, maximum=0.25, step=0.01, value=0.1)
subnet_btn = gr.Button(value='Plot Motif Causal Subnetwork')
subnet_plot = gr.Plot(label='Motif Causal Subnetwork')
with gr.Row() as row:
with gr.Column():
with gr.Row() as row:
tf_pairs = gr.Dropdown(label='TF pair', choices=gene_pairs)
tf_pairs_btn = gr.Button(value='Load & Plot')
interact_plddt1 = gr.Plot(label='Interact pLDDT 1')
interact_plddt2 = gr.Plot(label='Interact pLDDT 2')
protein1_plddt = gr.Plot(label='Protein 1 pLDDT')
protein2_plddt = gr.Plot(label='Protein 2 pLDDT')
heatmap = gr.Plot(label='Heatmap')
with gr.Column():
with gr.Row() as row:
segpair = gr.Dropdown(label='Seg pair', choices=seg_pairs.value)
segpair_btn = gr.Button(value='Get PDB')
pdb_html = gr.HTML(label="PDB HTML")
pdb_file = gr.File(label='Download PDB')
tf_pairs_btn.click(visualize_AF2, inputs = [tf_pairs, af], outputs = [ interact_plddt1, interact_plddt2, protein1_plddt, protein2_plddt, heatmap, segpair, af])
segpair_btn.click(view_pdb, inputs=[segpair, af], outputs=[pdb_html, af, pdb_file])
celltype_btn.click(load_and_plot_celltype, inputs=[celltype_name, gr.State(GET_CONFIG), cell], outputs=[gene_exp_plot, gene_exp_table, cell])
region_plot_btn.click(plot_gene_regions, inputs=[cell, gene_name_for_region], outputs=[region_plot, cell])
motif_plot_btn.click(plot_gene_motifs, inputs=[cell, gene_name_for_region, gr.State(motif)], outputs=[motif_plot, cell])
clustergram_btn.click(plot_motif_corr, inputs=[cell], outputs=[clustergram_plot, cell])
subnet_btn.click(plot_motif_subnet, inputs=[cell, gr.State(motif), motif_for_subnet, subnet_type, subnet_threshold], outputs=[subnet_plot, cell])
demo.launch(share=args.share, server_port=args.port)
# %%
|