File size: 13,405 Bytes
7dacac2
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d84f5
7dacac2
24a032c
fedfd3d
 
 
 
 
 
 
7dacac2
12c4eca
7dacac2
 
12c4eca
 
 
fedfd3d
 
 
 
 
 
12c4eca
 
 
 
24a032c
fedfd3d
12c4eca
 
fedfd3d
 
 
12c4eca
 
 
fedfd3d
12c4eca
fedfd3d
7dacac2
fedfd3d
7dacac2
 
fedfd3d
 
 
 
 
 
24a032c
7dacac2
cb86726
7dacac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb86726
 
7dacac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd71aa4
 
 
 
7dacac2
cd71aa4
 
 
 
 
b864951
cd71aa4
 
 
b864951
7dacac2
 
 
cd71aa4
7dacac2
 
cd71aa4
 
 
 
 
 
 
 
 
 
b864951
7dacac2
 
cd71aa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import subprocess
import gradio as gr
from PIL import Image as PILImage
import torchvision.transforms.functional as TF
import numpy as np
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
import re
import io
import base64
import cv2
from typing import List, Tuple, Optional
import sys


def add_sam2_to_path():
    """将SAM2安装目录添加到Python路径"""
    sam2_dir = os.path.abspath("third_party/sam2")
    if sam2_dir not in sys.path:
        sys.path.insert(0, sam2_dir)
    return sam2_dir

def install_sam2():
    """检查并安装SAM2及其依赖"""
    sam2_dir = "third_party/sam2"
    if not os.path.exists(sam2_dir):
        print("Installing SAM2...")
        os.makedirs("third_party", exist_ok=True)
        
        subprocess.run([
            "git", "clone", 
            "--recursive", 
            "https://github.com/facebookresearch/sam2.git", 
            sam2_dir
        ], check=True)
        
        original_dir = os.getcwd()
        try:
            os.chdir(sam2_dir)
    
            subprocess.run(["pip", "install", "-e", "."], check=True)
            
            
        except Exception as e:
            print(f"Error during SAM2 installation: {str(e)}")
            raise
        finally:
            os.chdir(original_dir)
        
        print("✅ SAM2 installed successfully!")
    else:
        print("SAM2 already exists, skipping installation.")


install_sam2()

sam2_dir = add_sam2_to_path()

from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
print("🎉 SAM2 modules imported successfully!")


MODEL_PATH = "geshang/Seg-R1-COD"
SAM_CHECKPOINT = "sam2_weights/sam2.1_hiera_large.pt"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
RESIZE_SIZE = (768, 768)

try:
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        MODEL_PATH,
        torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
        device_map="auto" if DEVICE == "cuda" else None
    ).to(DEVICE)
    processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
    print(f"Qwen model loaded on {DEVICE}")
except Exception as e:
    print(f"Error loading Qwen model: {e}")
    model = None
    processor = None

# SAM Wrapper
class CustomSAMWrapper:
    def __init__(self, model_path: str, device: str = DEVICE):
        try:
            from sam2.build_sam import build_sam2
            from sam2.sam2_image_predictor import SAM2ImagePredictor
            
            self.device = torch.device(device)
            # model_cfg = os.path.join("third_party/sam2", "configs/sam2.1/sam2.1_hiera_l.yaml")
            sam_model = build_sam2("configs/sam2.1/sam2.1_hiera_l.yaml", model_path)
            sam_model = sam_model.to(self.device)
            self.predictor = SAM2ImagePredictor(sam_model)
            self.last_mask = None
            print(f"SAM model loaded on {device}")
        except Exception as e:
            print(f"Error loading SAM model: {e}")
            self.predictor = None

    def predict(self, image: PILImage.Image, 
               points: List[Tuple[int, int]], 
               labels: List[int],
               bbox: Optional[List[List[int]]] = None) -> Tuple[np.ndarray, float]:
        if not self.predictor:
            return np.zeros((image.height, image.width), dtype=bool), 0.0
        
        try:
            input_points = np.array(points) if points else None
            input_labels = np.array(labels) if labels else None
            input_bboxes = np.array(bbox) if bbox else None

            image_np = np.array(image)
            rgb_image = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
            
            self.predictor.set_image(rgb_image)
            
            mask_pred, score, logits = self.predictor.predict(
                point_coords=input_points,
                point_labels=input_labels,
                box=input_bboxes,
                multimask_output=False,
            )
            
            self.last_mask = mask_pred[0]
            return mask_pred[0], score[0]
        except Exception as e:
            print(f"SAM prediction error: {e}")
            return np.zeros((image.height, image.width), dtype=bool), 0.0

sam_wrapper = CustomSAMWrapper(SAM_CHECKPOINT, device=DEVICE)


def parse_custom_format(content: str):
    point_pattern = r"<points>\s*(\[\s*(?:\[\s*\d+\s*,\s*\d+\s*\]\s*,?\s*)+\])\s*</points>"
    label_pattern = r"<labels>\s*(\[\s*(?:\d+\s*,?\s*)+\])\s*</labels>"
    bbox_pattern  = r"<bbox>\s*(\[\s*\d+\s*,\s*\d+\s*,\s*\d+\s*,\s*\d+\s*\])\s*</bbox>"

    point_match = re.search(point_pattern, content)
    label_match = re.search(label_pattern, content)
    bbox_matches = re.findall(bbox_pattern, content)

    try:
        points = np.array(eval(point_match.group(1))) if point_match else None
        labels = np.array(eval(label_match.group(1))) if label_match else None

        if points is not None and labels is not None:
            if not (len(points.shape) == 2 and points.shape[1] == 2 and len(labels) == points.shape[0]):
                points, labels = None, None

        bboxes = []
        for bbox_str in bbox_matches:
            bbox = np.array(eval(bbox_str))
            if len(bbox.shape) == 1 and bbox.shape[0] == 4:
                bboxes.append(bbox)
        
        bboxes = np.stack(bboxes, axis=0) if bboxes else None

        return points, labels, bboxes

    except Exception as e:
        print("Error parsing content:", e)
        return None, None, None

def prepare_test_messages(image, prompt):
    buffered = io.BytesIO()
    image = TF.resize(image, RESIZE_SIZE)
    image.save(buffered, format="JPEG")
    img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')

    if "segment" in prompt or "mask" in prompt:
        SYSTEM_PROMPT = (
            "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
            "first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
            "process should enclosed within <think> </think> tags, and the bounding box, points and points labels should be enclosed within <bbox></bbox>, <points></points>, and <labels></labels>, respectively. i.e., "
            "<think> reasoning process here </think> <bbox>[x1,y1,x2,y2]</bbox>, <points>[[x3,y3],[x4,y4],...]</points>, <labels>[1,0,...]</labels>"
            "Where 1 indicates a foreground (object) point, and 0 indicates a background point."
        )
    else:
        SYSTEM_PROMPT = "You're a helpful visual assistant."

    messages = [
        {"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image/jpeg;base64,{img_base64}"},
                {"type": "text", "text": prompt},
            ],
        },
    ]
    return [messages]

def answer_question(batch_messages):
    if not model or not processor:
        return ["Model not loaded. Please check logs."]
    
    try:
        text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in batch_messages]
        image_inputs, video_inputs = process_vision_info(batch_messages)
        inputs = processor(text=text, images=image_inputs, videos=video_inputs, return_tensors="pt", padding=True).to(DEVICE)
        outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024)
        trimmed = [out[len(inp):] for inp, out in zip(inputs.input_ids, outputs)]
        return processor.batch_decode(trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    except Exception as e:
        print(f"Error generating answer: {e}")
        return ["Error generating response"]

def visualize_masks_on_image(
    image: PILImage.Image,
    masks_np: list,
    colors=[(255, 0, 0), (0, 255, 0), (0, 0, 255),
            (255, 255, 0), (255, 0, 255), (0, 255, 255),
            (128, 128, 255)],
    alpha=0.5,
):
    if not masks_np:
        return image
    
    image_np = np.array(image)
    color_mask = np.zeros((image_np.shape[0], image_np.shape[1], 3), dtype=np.uint8)
    
    for i, mask in enumerate(masks_np):
        color = colors[i % len(colors)]
        mask = mask.astype(np.uint8)
        
        if mask.shape[:2] != image_np.shape[:2]:
            mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
        
        color_mask[:, :, 0] = color_mask[:, :, 0] | (mask * color[0])
        color_mask[:, :, 1] = color_mask[:, :, 1] | (mask * color[1])
        color_mask[:, :, 2] = color_mask[:, :, 2] | (mask * color[2])
    
    blended = cv2.addWeighted(image_np, 1 - alpha, color_mask, alpha, 0)
    return PILImage.fromarray(blended)

def run_pipeline(image: PILImage.Image, prompt: str):
    if not model or not processor:
        return "Models not loaded. Please check logs.", None
    
    try:
        img_original = image.copy()
        img_resized = TF.resize(image, RESIZE_SIZE)

        messages = prepare_test_messages(img_resized, prompt)
        output_text = answer_question(messages)[0]
        print(f"Model output: {output_text}")

        points, labels, bbox = parse_custom_format(output_text)

        mask_pred = None
        final_mask = np.zeros(RESIZE_SIZE[::-1], dtype=bool)

        if (points is not None and labels is not None) or (bbox is not None):
            img = img_resized
            
            if bbox is not None and len(bbox.shape) == 2:
                for b in bbox:
                    b = b.tolist()
                    if points is not None and labels is not None:
                        in_bbox_mask = (
                            (points[:, 0] >= b[0]) & (points[:, 0] <= b[2]) &
                            (points[:, 1] >= b[1]) & (points[:, 1] <= b[3])
                        )
                        selected_points = points[in_bbox_mask]
                        selected_labels = labels[in_bbox_mask]
                    else:
                        selected_points, selected_labels = None, None

                    try:
                        mask, _ = sam_wrapper.predict(
                            img,
                            selected_points.tolist() if selected_points is not None and len(selected_points) > 0 else None,
                            selected_labels.tolist() if selected_labels is not None and len(selected_labels) > 0 else None,
                            b
                        )
                        final_mask |= (mask > 0)
                    except Exception as e:
                        print(f"Mask prediction error for bbox: {e}")
                        continue

                mask_pred = final_mask
            else:
                try:
                    mask_pred, _ = sam_wrapper.predict(
                        img,
                        points.tolist() if points is not None else None,
                        labels.tolist() if labels is not None else None,
                        bbox.tolist() if bbox is not None else None
                    )
                    mask_pred = mask_pred > 0
                except Exception as e:
                    print(f"Mask prediction error: {e}")
                    mask_pred = np.zeros(RESIZE_SIZE[::-1], dtype=bool)
        else:
            return output_text, None

        # 将掩码调整回原始图像尺寸
        mask_np = mask_pred
        mask_img = PILImage.fromarray((mask_np * 255).astype(np.uint8)).resize(img_original.size)
        mask_img = mask_img.convert("L")
        mask_np = np.array(mask_img) > 128
        
        # 可视化结果
        visualized_img = visualize_masks_on_image(
            img_original, 
            masks_np=[mask_np],
            alpha=0.6
        )
        return output_text, visualized_img
    except Exception as e:
        print(f"Pipeline error: {e}")
        return f"Error processing request: {str(e)}", None



with gr.Blocks(title="Seg-R1") as demo:
    gr.Markdown("# Seg-R1")
    # gr.Markdown("Upload an image and ask questions about segmentation.")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Upload Image")
            text_input = gr.Textbox(lines=2, label="Question", placeholder="Ask about objects in the image...")
            submit_btn = gr.Button("Submit", variant="primary")
        
        with gr.Column():
            text_output = gr.Textbox(label="Model Response", interactive=False)
            image_output = gr.Image(type="pil", label="Segmentation Result", interactive=False)
    
    submit_btn.click(
        fn=run_pipeline,
        inputs=[image_input, text_input],
        outputs=[text_output, image_output]
    )
    
    gr.Examples(
        examples=[
            ["imgs/cards.jpg", "Identify and segment the Ace of Spades."],
            ["imgs/painting.jpg", "Identify and segment the man an the house."],
            ["imgs/dogs.jpg", "Identify and segment the tongue of the dog."],
        ],
        inputs=[image_input, text_input],
        outputs=[text_output, image_output],
        fn=run_pipeline,
        cache_examples=True
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)